Page 371 - Shigley's Mechanical Engineering Design
P. 371

bud29281_ch06_265-357.qxd  11/30/2009  4:24 pm  Page 346 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                 346   Mechanical Engineering Design

                                          pp. 293–294, k f
                                           3   Determine fatigue stress-concentration factor, K f or K fs . First, find K t or K ts from
                                               Table A–15.
                                          p. 295        K f = 1 + q(K t − 1) or  K fs = 1 + q(K ts − 1)    (6–32)


                                            Obtain q from either Fig. 6–20 or 6–21, pp. 295–296.
                                            Alternatively,
                                                                              K t − 1
                                          p. 296                    K f = 1 +   √                          (6–33)
                                                                             1 +  a/r
                                             √           √
                                          For  a in units of  in, and S ut in kpsi
                                                         √                 −3            −5  2         −8  3
                                          Bending or axial:  a = 0.246 − 3.08(10 )S ut + 1.51(10 )S − 2.67(10 )S ut
                                                                                             ut
                                                                                                         (6–35a)
                                                 √                  −3            −5  2         −8  3
                                          Torsion:  a = 0.190 − 2.51(10 )S ut + 1.35(10 )S − 2.67(10 )S ut  (6–35b)
                                                                                     ut
                                           4   Apply K f or K fs by either dividing S e by it or multiplying it with the purely
                                               reversing stress, not both.
                                           5   Determine fatigue life constants a and b. If  S ut ≥ 70 kpsi, determine f from
                                               Fig. 6–18, p. 285. If S ut < 70 kpsi, let  f = 0.9.
                                                                            2
                                          p. 285                   a = ( fS ut ) /S e                      (6–14)
                                                                   b =−[log( fS ut /S e )]/3               (6–15)
                                           6   Determine fatigue strength S f at N cycles, or, N cycles to failure at a reversing
                                               stress σ rev
                                          (Note: this only applies to purely reversing stresses where σ m = 0).
                                          p. 285                      S f = aN b                           (6–13)
                                                                                 1/b
                                                                      N = (σ rev /a)                       (6–16)
                                          Fluctuating Simple Loading
                                          For S e , K f or K fs , see previous subsection.
                                           1   Calculate σ m and σ a . Apply K f to both stresses.
                                          p. 301         σ m = (σ max + σ min )/2  σ a =|σ max − σ min |/2  (6–36)
                                           2   Apply to a fatigue failure criterion, p. 306

                                          σ m ≥ 0
                                                       Soderburg          σ a /S e + σ m /S y = 1/n        (6–45)
                                                       mod-Goodman        σ a /S e + σ m /S ut = 1/n       (6–46)
                                                                                           2
                                                       Gerber             nσ a /S e + (nσ m /S ut ) = 1    (6–47)
                                                                                          2
                                                                                2
                                                       ASME-elliptic      (σ a /S e ) + (σ m /S y ) = 1/n 2  (6–48)
                                          σ m < 0
                                          p. 305                        σ a = S e /n
   366   367   368   369   370   371   372   373   374   375   376