Page 253 -
P. 253

11 How Many Times Should One Run a Computational Simulation?    251

            Secchi, D., & Gullekson, N. (2016). Individual and organizational conditions for the emergence
              and evolution of bandwagons. Computational and Mathematical Organization Theory, 22(1),
              88–133.
            Secchi, D., & Seri, R. (2014). ‘How many times should my simulation run?’ Power analysis for
              agent-based modeling. In European Academy of Management Annual Conference, Valencia,
              Spain.
            Secchi, D., & Seri, R. (2017). Controlling for ‘false negatives’ in agent-based models: A review
              of power analysis in organizational research. Computational and Mathematical Organization
              Theory, 23(1), 94–121.
            Shimazoe, J., & Burton, R. M. (2013). Justification shift and uncertainty: Why are low-probability
              near misses underrated against organizational routines? Computational and Mathematical
              Organization Theory, 19(1), 78–100.
            Simon, H. A. (1976). How complex are complex systems. In PSA: Proceedings of the Biennial
              Meeting of the Philosophy of Science Association (Vol. 2, pp. 507–522). Baltimore: Philosophy
              of Science Association.
            Simon, H. A. (1978). Rationality as process and a product of thought. American Economic Review,
              68, 1–14.
            Simon, H. A. (1997). Administrative behavior (4th ed.). New York: The Free Press.
            Thiele, J., Kurth, W., & Grimm, V. (2015). Facilitating parameter estimation and sensitivity
              analysis of agent-based models: A cookbook using NetLogo and R. Journal of Artificial
              Societies and Social Simulation, 17(3), 11.
            Thomsen, S. E. (2016). How docility impacts team efficiency. An agent-based modeling approach.
              In D. Secchi & M. Neumann (Eds.), Agent-based simulation of organizational behavior. New
              frontiers of social science research (pp. 159–173). New York: Springer.
            Troitzsch, K. G. (2017). Historical introduction. doi:https://doi.org/10.1007/978-3-319-66948-
              9_2.
            van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge: Cambridge University Press.
            Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and
              purpose. American Statistician, 70(2), 129–133.
            Wilensky, U. (1999). Netlogo. Center for Connected Learning and Computer-Based Modeling,
              Northwestern University, Evanston, IL.
   248   249   250   251   252   253   254   255   256   257   258