Page 42 - Standard Handbook Of Petroleum & Natural Gas Engineering
P. 42

Trigonometry   3 1

                    1 + tan2x = sec2x
                    1 + cotzx  = CSCZX
                    sin(-x)  = -sin  x,  cos(-x)  = cos x,  tan(-x)  = -tan  x
                                                 Two Angles
                    sin(x + y)  = sin x cos y + cos x sin y
                    sin(x - y)  = sin x cos y - cos x sin y
                    cos(x + y)  = cos x  cos y - sin x  sin y
                    cos(x - y)  = cos x cos y + sin x  sin y
                    tan(x + y)  = (tan x + tan y)/(l  - tan x tan y)
                    tan(x - y)  = (tan x - tan y)/(l  + tan x tan y)
                    cot(x + y)  = (cot x cot y - l)/(cot y + cot x)
                    cot(x - y)  = (cot x cot y + l)/(cot y - cot x)
                    sin x + sin y = 2 sin[l/2(x  + y)] cos[l/2(x - y)]
                    sin x - sin y = 2 cos[l/2(x  + y)] sin[l/2(x  - y)]
                    cos x + cos y = 2 cos[l/2(x  + y)] cos[l/2(x  - y)]
                    cos x - cos y = - 2 sin[l/2(x  + y)]  sin[l/2(x  - y)]
                    tan x + tan y = [sin(x + y)]/[cos x cos y]
                    tan x - tan y = [sin(x - y)]/[cos  x cos y]
                    cot x + cot y = [sin(x + y)]/[sin  x sin y]
                    cot x - cot y = [sin(y - x)]/[sin  x sin y]
                    sin2x - sin2y = cos2y - cos2x
                              = sin(x + y)  sin(x - y)
                    cos2x - sin2y = cos2y - sin2x
                               = cos(x + y)  cos(x - y)
                    sin(45" + x)  = cos(45" - x),  tan(45" + x)  = cot(45" - x)
                    sin(45" - x)  = cos(45" + x),  tan(45" - x)  = cot(45" + x)
                                            Multlple and Half Angles
                    tan 2x  = (2 tan x)/(l  - tan2x)
                    cot 2x  = (COt2X - 1)/(2 cot x)
                    sin(nx) = n sin x cosn-'x - (n) ,sin3x  COS~X + (n)5sin5x cosW5x -
                    cos(nx) = cosnx - (n),sin2x  cosw2x + (n),sin4x  COS~X - . . .
                    (Note: (n)z, . . . are the binomial coefficients)
                    sin(x/2) = i J1/2o

                    COS(x/2)  = f Jl2 (1 + cos x)
                    tan(x/2) = (sin x)/(l  + cos x)  = f J(1-  COS  x)/(I  + COS  x)

                                        Three Angles Whose  Sum = 180"
                    sin A + sin B + sin C = 4 cos(N2)  cos(B/2) cos(CI2)
                    cos A + cos B + cos C = 4 sin(N2)  sin(B/2) sin(C/2) + 1
                    sin A + sin B - sin C = 4 sin(N2)  sin(B/2) cos(C/2)
                    cos A + cos B - cos C = 4 cos(N2)  cos(B/2) sin(CI2) - 1
                    sin2A + sin2B + sin%  = 2 cos A  cos B cos C + 2
                    sinZA + sin2B - sin%  = 2 sin A sin  B cos C
                    tan A + tan  B + tan C = tan A tan B tan C
                    cot(N2)  + cOt(B/2) + cot(C/2) = cot(N2)  cot(B/2) cot(C/2)
                    sin 2A + sin 28 + sin 2C  = 4 sin A sin B sin C
                    sin 2A + sin 28 - sin 2C  = 4 cos A cos B sin C
   37   38   39   40   41   42   43   44   45   46   47