Page 44 - Standard Handbook Of Petroleum & Natural Gas Engineering
P. 44

Trigonometry   33

                                            Hyperbolic Functions
                      The hyperbolic sine,  hyperbolic cosine,  etc. of any number x are functions related
                    to the exponential function ex. Their definitions and properties are very similar
                    to  the  trigonometric functions and are given  in Table  1-5.
                      The  inverse  hyperbolic  functions,  sinh-’x,  etc.,  are  related  to  the  logarithmic
                    functions and are particularly  useful in integral calculus. These relationships  may
                    be  defined  for  real  numbers  x  and y  as

                       sinh-’ (x/y) = In( x + Jx* + y2 ) - In y

                       ash-’ (x/y) = In( x + Jx* - y2 ) - In y

                      tanh-’(x/y)  =  1/2   In[(y  + x)/(y  - x)]

                      coth-’(x/y)  =  1/2   In[(x  + y)/(x  - y)]






                                                  Table 1-5
                                            Hyperbolic Functions
                    sinh x  = 1/2(ex - e-.)
                    cosh x  =  1/2(eK + e-.)
                    tanh x  = sinh x/cosh  x
                    csch x  = l/sinh x
                    sech x  =  llcosh x
                    coth x  =  l/tanh x
                    sinh(-x)  = -sinh  x
                    cosh(-x)  = COSh  x
                    tanh(-x)  = -tanh  x
                    cosh’x  - sinh’x  = 1
                    1 - tanh‘x  = sech’x
                    1 - COth’X  = - CSCh’X
                    sinh(x f y)  = sinh x  cosh y f cosh x  sinh y
                    cosh(x f y)  = cosh x  cosh y f sinh x  sinh y
                    tanh(x f y)  = (tanh x f tanh y)/(l  f tanh x  tanh y)
                    sinh 2x  = 2 sinh x  cosh x
                    cosh 2x  = cosh2x + sinhzx
                    tanh 2x  =  (2 tanh x)/(l  + tanh2x)
                    sinh(d2)  =  .\11/2(cosh x - 1)
                    ~0~h(x/2)  ,/1/2(cosh  x + 1)
                            =
                    tanh(d2)  = (cosh x - l)/(sinh x)  = (sinh x)/(cosh x  + 1)
   39   40   41   42   43   44   45   46   47   48   49