Page 176 - The Combined Finite-Discrete Element Method
P. 176

CONSTANT STRAIN TRIANGLE FINITE ELEMENT       159

           The matrix

                                              ˘   ˘
                                              i x  j x
                                                                               (4.146)
                                                  ˘
                                              ˘ i y  j y
           is called the deformed initial transformation matrix.
             Transformation of vector components from the global frame into the initial frame is
           obtained using an inverse initial transformation matrix:


                                                      −1

                                      a 
x    i x  j x   a x
                                          =                                    (4.147)
                                      a 
y   
 i y  
 j y  a y
           Transformation of vector components from the global frame into the deformed initial
           frame is obtained using an inverse deformed initial frame matrix:


                                                     −1
                                              ˘   ˘
                                      b ˘x    i x  j x  b x
                                          =                                    (4.148)
                                                  ˘
                                      b ˘y    ˘ i y  j y  b y
             Transformation of vector components from the initial into the deformed initial frame
           is obtained as follows:

                                 a = a 
x i + a 
y j                            (4.149)


                                       ˘
                                   = a ˘x i + a ˘y j ˘
                                   = a 
x (i ˘x i + i ˘y j) + a 
y (j ˘x i + j ˘y j)
                                            
 ˘
                                       
 ˘
                                                         
 ˘
                                                    
 ˘
                                   = (a 
x i ˘x + a 
y j ˘x )i + (a 
x i ˘y + a 
y j ˘y )j ˘


                                             
 ˘

           Thus


                                       a ˘x    i ˘x  j ˘x  a 
x
                                           =                                   (4.150)
                                       a ˘y   
 i ˘y  
 j ˘y  a 
y
           Transformation of vector components from the deformed initial frame into the initial
           frame is obtained as follows:
                                 a = a ˘x i + a ˘y j ˘                          (4.151)
                                       ˘


                                   = a 
x i + a 
y j
                                        ˘
                                                          ˘
                                                     ˘
                                   = a ˘x (i 
x i + i 
y j) + a ˘y (j 
x i + j 
y j)
                                             ˘
                                                             ˘
                                   = (a ˘x i 
x + a ˘y j 
x )i + (a ˘x i 
y + a ˘y j 
y )j
                                                      ˘
                                        ˘
                                              ˘
           Thus
                                                              −1
                                      ˘   ˘
                              a 
x    i 
x  j 
x  a ˘x  i ˘x  j ˘x  a ˘x
                                  =               =                            (4.152)
                                          ˘
                              a 
y    ˘ i 
y  j 
y  a ˘y  
 i ˘y  
 j ˘y  a ˘y
   171   172   173   174   175   176   177   178   179   180   181