Page 179 - The Combined Finite-Discrete Element Method
P. 179

162    DEFORMABILITY OF DISCRETE ELEMENTS

            The physical meaning of this transformation is best understood by considering the inverse
            transformation
                                                        
                                   ∂x c  ∂x c     ∂x c  ∂x c

                                                           
                                   ∂
x i  ∂
y i   ∂x i  ∂y i  i x  j x
                                              
                             F =            =                               (4.166)
                                   ∂y c  ∂y c     ∂y c  ∂y c  i y  j y
                                                        
                                   ∂
x i  ∂
y i   ∂x i  ∂y i
            The first line of F matrix is the vector

                                             ∂x c  ∂x c
                                                                                (4.167)
                                             ∂
x i  ∂
y i
            the components of which are given in global frame (i, j). It represents the gradient of the
            function x c (x i ,y i ). Column


                                            
     i x
                                             i =                                (4.168)

                                                  i y
            is the base vector of the initial frame

                                               (i, j)                           (4.169)
            expressed using the global base (i, j). Thus,


                                       ∂x c  ∂x c  
 i x  ∂x c
                                                       =                        (4.170)

                                       ∂x i  ∂y i  i y   ∂
x i
            Thesameappliesto

                                       ∂y c  ∂y c  
 i x  ∂y c
                                                       =                        (4.171)

                                       ∂x i  ∂y i  i y   ∂
x i
            Having understood the physical meaning behind the components of the deformation gra-
            dient, it is evident that the same applies to the velocity gradient:

                                                        
                                ∂v xc  ∂v xc     ∂v xc  ∂v xc
                                                                       −1

                                                           
                                 ∂x i  ∂y i      ∂
x i  ∂
y i  i x  j x
                                             
                          L =               =                               (4.172)
                                ∂v yc  ∂v yc      ∂v yc  ∂v yc   
 i y  
 j y
                                 ∂x i  ∂y i      ∂
x i  ∂
y i
            The deformation gradient is comprised of either rotation followed by stretch
                                             F = VR                             (4.173)

            or stretch followed by rotation
                                             F = RU                             (4.174)
   174   175   176   177   178   179   180   181   182   183   184