Page 210 - The Combined Finite-Discrete Element Method
P. 210

DYNAMICS OF IRREGULAR DISCRETE ELEMENTS SUBJECT        193





                                M x


                                                 t
                                                 (a)



                               hM x



                                  0    h    2h    3h   4h    5h
                                                  t
                                                 (b)
           Figure 5.5  Approximation of external load. (a) Continuous load, (b) equivalent series of impulse
           loads.


           5.6.9   Change in angular velocity during a single time step
           The assumption that the change of angular momentum is instantaneous implies that the
           motion of the discrete element during the time step is free of external moments. In other
           words, the angular momentum at the beginning of the time step (before the discrete
           element has changed its spatial orientation, but after the external impulse load has been
           taken into account) is equal to the angular momentum at the end of the time step, i.e.

                                            t+h H = t H                         (5.76)
           The angular momentum at time t + h is a function of the angular velocity at time t + h,i.e.

                            
                        t+h H ˜x
               t+h H =   t+h H ˜y                                              (5.77)
                        t+h H ˜z
                                                                      
                                                     ˜     ˜     ˜         
                                             0   0    t+h i x  t+h j x  t+h k x
                    t+h i ˜x  t+h j ˜x  t+h k ˜x  I x                      t+h ω ˜x
                                                                     ˜
                                                               ˜
                                                                       
                =    t+h i ˜y  t+h j ˜y  t+h k ˜y    0  I y  0     ˜  t+h j y  t+h k y     t+h ω ˜y  
                                                     t+h i y
                                         0   0
                                                                     ˜
                                                               ˜
                                                         ˜
                    +ht i ˜z  t+h j ˜z  t+h k ˜z  I z  t+h i z  t+h j z  t+h k z  t+h ω ˜z
           Equations (5.76) and (5.77), when combined, yield angular velocity at time t + h
                    
                t+h ω ˜x
                                                                                 (5.78)
                t+h ω ˜y
                    
                t+h ω ˜z
                                                                       
                                                −1    ˜      ˜     ˜         
                    t+h i ˜x  t+h j ˜x  t+h k ˜x  I x  0  0  t+h i x  t+h j x  t+h k x  t H ˜x
                                                        ˜      ˜     ˜  
                    t+h i ˜y  t+h j ˜y  t+h k ˜y     0  I y  0     t+h i y  t+h j y  t+h k y    t H ˜y  
              = 
                    t+h i ˜z  t+h j ˜z  t+h k ˜z  0  0  I z  ˜   ˜     ˜      t H ˜z
                                                        t+h i z  t+h j z  t+h k z
   205   206   207   208   209   210   211   212   213   214   215