Page 214 - The Combined Finite-Discrete Element Method
P. 214

DYNAMICS OF IRREGULAR DISCRETE ELEMENTS SUBJECT        197

           and the spatial orientation of the discrete element at time t + h:
                                              '            (
                                    (ψ · t i)      (ψ · t i)
                              t+h i =  2  ψ +  t i −  2  ψ cos(ψ)                (5.91)
                                     ψ               ψ
                                      1
                                   +   (ψ × t i) sin(ψ)
                                     ψ
                                              '            (
                                    (ψ · t j)      (ψ · t j)
                             t+h j =   2  ψ +  t j −   2  ψ cos(ψ)
                                     ψ               ψ
                                      1
                                   +   (ψ × t j) sin(ψ)
                                     ψ
                                              '             (
                                    (ψ · t k)       (ψ · t k)
                             t+h k =   2  ψ +   t k −   2  ψ cos(ψ)
                                      ψ               ψ
                                      1
                                   +   (ψ × t k) sin(ψ)
                                     ψ

           Step 7: set

                                                     
                                         t ω ˜x    t+h ω ˜x
                                         t ω ˜y    t+h ω ˜y
                                              =                              (5.92)
                                         t ω ˜z    t+h ω ˜z
                                             t i = t+h i                         (5.93)
                                             t j = t+h j
                                            t k = t+h k

                                             t = t + h
           and return to Step 1.
             The above described direct integration scheme is best demonstrated using numeri-
           cal examples. In Figure 5.6 a single rigid discrete element with one axis of symmetry
           is shown.



                                                     k
                                   ~
                                   k
                                                            j
                                          ~
                                          j

                                                          i
                                       ~
                                       i

                   Figure 5.6 Axisymmetric discrete element subject to initial angular velocity.
   209   210   211   212   213   214   215   216   217   218   219