Page 211 - The Combined Finite-Discrete Element Method
P. 211

194    TEMPORAL DISCRETISATION

            5.6.10  Munjiza direct time integration scheme

            The temporal discretisation of the governing equations described above is used to formu-
            late the integration algorithm. This is achieved through the average angular velocity in
            equation (5.66) being defined using formulae for the fourth-order Runge–Kutta method.
            The resulting direct time integration scheme was first formulated by Munjiza, and is called
            the Munjiza time integration scheme. It can be summarised as follows:

            Step 1: set the first approximation of the average angular velocity:

                                                    
                                                  t ω ˜x
                                           1 ω =   t ω ˜y                      (5.79)
                                                  t ω ˜z

            the total angle of rotation:

                                           h
                                      1 ψ =  1 ω                                 (5.80)
                                           2
                                           &
                                               2     2     2
                                      1 ψ =  1 ψ + 1 ψ + 1 ψ ˜ z
                                                     ˜ y
                                               ˜ x
            and the first approximation of the intermediate spatial orientation:
                                     '             (
                         ( 1 ψ · t i)     ( 1 ψ · t i)         1
                    1
                 t+h/2  i =  2  1 ψ +  t i −  2  1 ψ cos( 1 ψ) +  ( 1 ψ × t i) sin( 1 ψ) (5.81)
                          1 ψ              1 ψ                1 ψ
                                     '             (
                         ( 1 ψ · t j)     ( 1 ψ · t j)         1
                    1
                 t+h/2  j =  2  1 ψ +  t j −  2  1 ψ cos( 1 ψ) +  ( 1 ψ × t j) sin( 1 ψ)
                          1 ψ               1 ψ               1 ψ
                                     '               (
                         ( 1 ψ · t k)      ( 1 ψ · t k)         1
                    1
                t+h/2  k =   2  1 ψ +  t k −   2  1 ψ cos( 1 ψ) +  ( 1 ψ × t k) sin( 1 ψ)
                           1 ψ               1 ψ                1 ψ
            Step 2: calculate the second approximation of the average angular velocity

                       
                    2 ω ˜x
              2 ω =   2 ω ˜y    =                                              (5.82)
                     2 ω ˜z
                     1       1       1               −1     1 ˜     1 ˜     1 ˜
                                                                             
                                                                               k
                                                                       j
                                                               i
                      i
                 t+h/2 ˜x  t+h/2  j ˜x  t+h/2  k ˜x  I x  0  0  t+h/2 x  t+h/2 x  t+h/2 x
                     1       1       1
                                                                       j
                    i                                     1 ˜ i   1 ˜     1 ˜ k  
               t+h/2 ˜y  t+h/2  j ˜y  t+h/2  k ˜y     0  I y  0      t+h/2 y  t+h/2 y  t+h/2 y 
                     1 i     1 j     1      0   0  I z        1 ˜     1 ˜     1 ˜
                                                               i
                                                                               k
                                                                       j
                  t+h/2 ˜z  t+h/2 ˜z  t+h/2  k ˜z          t+h/2 z  t+h/2 z  t+h/2 z
                                                                           
                                            ˜    ˜   ˜                
                   t i ˜x  t j ˜x  t k ˜x  I x  0  0  t i x  t j x  t k x  t ω ˜x  t M ˜x h
                                               ˜   ˜   ˜                   
                   t i ˜y  j ˜y  t k ˜y     0  I y  0     t i y  t j y   t ω ˜y    +    
                                                       t k y          t M ˜y h 
                    t i ˜z  t j ˜z  t k ˜z  0  0  I z  ˜  ˜  ˜  t ω ˜z  t M ˜z h
                                                t i z  t j z  t k z
   206   207   208   209   210   211   212   213   214   215   216