Page 717 - The Mechatronics Handbook
P. 717

0066_Frame_C23  Page 25  Wednesday, January 9, 2002  1:53 PM









                                         TABLE 23.7  DTFT of Common DT Signals
                                         x(n)          Frequency-Domain Representation, X( f )
                                         δ(n)                       1
                                                              ∞             1
                                         A, −∞ < n < ∞     AF s ∑  δ f –  mF s ), F s =  ---
                                                                 (
                                                             k=∞            T
                                                               –
                                                                     ∞
                                                              1
                                                                       (
                                         u(n)              ------------------- +  F s ∑  δ f –  kF s )
                                                                  ----
                                                           1 –  e – j2πf  2  k=∞
                                                                     –
                                             n               sin  ( [  2q +  1)πf ]
                                          Π --------------- 1  ---------------------------------------
                                           
                                            2q + 
                                                                    πf )
                                                                    (
                                                                  sin
                                                                   2
                                                               sin πfq(  )
                                            n
                                          Λ ---                  -----------------------
                                            q                  qsin πf(  )
                                                                    2
                                                                    2
                                         sgn(n)                  -------------------
                                                                 1 –  e  – j2πf
                                          n                      1
                                         α u(n)               ------------------------, α <  1
                                                              1 αe–  –  j2πf
                                                               1 α
                                                                   2
                                                                 –
                                         α |n|            ---------------------------------------------------, α <  1
                                                          1 –  2α cos ( 2πf ) +  α 2
                                                                 –  j2πf
                                           n                   αe
                                         nα u(n)             ------------------------------, α <  1
                                                                    )
                                                             ( 1 αe  – j2πf 2
                                                               –
                                          −αn                    1
                                         e  u(n)              -----------------------------, α >  0
                                                                   j2πf )
                                                                 α +
                                                              1 –  e  ( –
                                                                  – 2α
                                          −α |n|               1 –  e
                                         e                ---------------------------------------------------------, α >  0
                                                              α
                                                                        2α
                                                              –
                                                          1 –  2e cos ( 2πf ) +  e –
                                                                ∞
                                          j2πf 0 n
                                                                  (
                                          e                  F s ∑  δ f –  f 0 +  kF s )
                                                               k=∞
                                                                –
                                                        ∞
                                                                          (
                                                      F s  jθ           j – θ
                                         cos(2πf 0 n + θ)  ----  ∑  { e δ f –(  f 0 +  kF s ) +  e δ f +  f 0 +  kF s )}
                                                      2
                                                       k=∞
                                                        –
                                          sin ( 2πf c n)             f 
                                          --------------------------  Π ------
                                            πn                       2f c 
                       Discrete Fourier Series 6–8
                       Suppose x(n) is a periodic DT signal with period N, then it is possible to obtain its discrete Fourier series
                       (DFS) expansion in a manner analogous to the computation of the complex Fourier series for the CT
                                                                   – n  j2πn/N
                       signals. The orthogonal basis function for the DFS is W N   = e   so that the decomposition of x(n)
                       into a sum of N harmonically related complex exponentials is expressed as
                                                       N−1          N−1
                                                xn() =  ∑  c k e  j2πkn/N  =  ∑  c k W N –  kn  (23.42)
                                                       k=0          k=0
                                                                                            mn
                       where c k  represents the discrete Fourier series coefficients. Multiplying both sides of (23.42) by W N  , summing
                       over one period, and using the fact that
                                                   N−1          N,  k =  m
                                                   ∑  W N nk−m)  =  
                                                        (
                                                   k=0          0,  k ≠  m
                      ©2002 CRC Press LLC
   712   713   714   715   716   717   718   719   720   721   722