Page 716 - The Mechatronics Handbook
P. 716

0066_Frame_C23  Page 24  Wednesday, January 9, 2002  1:53 PM









                             TABLE 23.6  Properties of DTFT
                             Property                Signal Description      Frequency Domain
                                                                                ∞
                                                        1
                                                                (
                             Even symmetry (real signal)  x e n() =  -- xn() +{  x – n)}  X e f() =  ∑  x e n() cos ( 2πnf )
                                                        2
                                                                                n=∞
                                                                                 –
                                                                                 ∞
                                                         1
                                                                (
                             Odd symmetry (real signal)  x o n() =  -- xn() –{  x – n)}  X o f() =  – ∑  x o n() sin ( 2πnf )
                                                         2
                                                                                n=∞
                                                                                 –
                             Linearity                 ax n()  + by n()       aX f()  + bY f()
                             Time shifting              x(n − m)                e −j2πfm X f()
                                                          (
                                                                                  (
                             Time reversal               x – n)                  X – )
                                                                                    f
                             Convolution                x n() ∗y n()            X f() Y f()
                                                                                       (
                             Correlation            R xy n()  = x n()  ⊕ y n()  S xy f()  = X f() Y f )
                                                                                       –
                             Wiener–Khintchine theorem   R xx n()                S xx f()
                                                         j2πf 0 n
                                                                                 (
                             Frequency shifting         e  xn()                 X f – )
                                                                                    f 0
                                                                                      (
                             Modulation               xn() cos ( 2pnf 0 )  1 -- Xf +({  f 0 ) +  Xf – )}
                                                                                         f 0
                                                                           2
                                                                            1
                             Multiplication             x n() n()           ---- ∫  X λ()Yf λ–(  ) λ
                                                                                        d
                                                           y
                                                                            F s F s
                             Differentiation in the                              j dX f()
                             frequency domain            nx n()                 ----------------------
                                                                                2π
                                                                                   df
                             Time differencing        x n()  − x n –(  1)     ( 1 –  e – j2pf )Xf()
                                                                                      ∞
                                                                         Xf()
                                                         n
                                                                                        (
                                                                                ----------------
                             Summation                  ∑  xm()         ------------------------ +  F s X 0()  ∑  δ f –  mF s )
                                                                           –
                                                                            j2πf
                                                        m=∞             ( 1 –  e  )  2  m=∞
                                                         –
                                                                                      –
                                                                                  ∗
                                                          ∗
                                                                                  (
                             Conjugation                 x n()                   X – )
                                                                                    f
                                                       ∞                     1
                                                                                     ∗
                                                             ∗
                                                                                        d
                                                                                      f
                             Parseval’s theorem        ∑  xn()y n()          ---- ∫  Xf()Y () f
                                                       n=∞                   F s F s
                                                        –
                         With the exception of the reflection operation (for the convolution), the procedures for computing
                       the convolution and correlation are the same. Hence, it is more computationally efficient to use the same
                       algorithm for evaluating both functions. To achieve this, one of the sequences is reflected (only for the
                       correlation analysis), followed by convolution operation, that is,
                                                    R xy n() =  xn() ∗ y – n)
                                                                    (
                                                                   ∗
                       and
                                                    R xx n() =  xn() ∗ x – n)
                                                                    (
                                                                   ∗
                       The energy of an aperiodic signal is computed from
                                                      ∞          ∞
                                                E =  ∑  x n()  2  =  ∑  xn()x n()
                                                                        ∗
                                                     n=∞        n=∞
                                                      –
                                                                  –
                         Substituting the conjugated form of (23.40) into this equation gives
                                                                  1
                                                    1
                                               E =  ---- ∫  Xf() d =  ---- ∫  S xx f() f        (23.41)
                                                             2
                                                              f
                                                                           d
                                                    F s F         F s F
                                                       s             s
                       This expression relates the distribution of the energy of an aperiodic signal to frequency. The quantity
                           2
                       |X(f )|  is called the energy spectral density of x(n). The DTFT of some commonly encountered signals
                       are shown in Table 23.7.
                      ©2002 CRC Press LLC
   711   712   713   714   715   716   717   718   719   720   721