Page 937 - The Mechatronics Handbook
P. 937

0066_Frame_C30  Page 48  Thursday, January 10, 2002  4:45 PM








                                                                      ∞
                       modifications, to accommodate control system design via H  optimization. Additional details may be
                       found in [8,11].
                         The methods presented in this chapter may be extended to discrete time linear shift invariant (LSI)
                       systems. Extensions to sampled data systems are also possible [1].

                       References

                        1. Chen, T. and Francis, B., Optimal Sampled-Data Control Systems, Springer, London, 1995.
                        2. Dorf, R.C. and Bishop, R.H., Modern Control Systems, Addison Wesley, 8th edition, CA, 1998.
                        3. Doyle, J.C., “Guaranteed margins for LQG regulators,” IEEE Transactions on Automatic Control, Vol.
                          AC-23, No. 4, August 1978, pp. 756–757.
                        4. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., “State-space solutions to standard H  2
                               ∞
                          and H  control problems,” IEEE Transactions on Automatic Control, Vol. AC-34, No. 8, 1989, pp. 831–
                          847. Also see Proceedings of the 1988 American Control Conference, Atlanta, Georgia, June, 1988.
                        5. Kalman, R.E., “A new approach to linear filtering and prediction problems,” ASME Journal of Basic
                          Engineering, Vol. 85, 1960, pp. 34–45.
                        6. Kalman, R.E. and Bucy, R.S., “New results in linear filtering and prediction problems,” ASME Journal
                          of Basic Engineering, 1960, pp. 95–108.
                        7. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, Wiley-Interscience, New York, 1972.
                        8. Rodriguez, A.A., A Practical Neo-Classical Approach to Feedback Control System Analysis and Design,
                          Control3D, 2000.
                        9. Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control, John Wiley and Sons, New York, 1989.
                       10. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Prentice-Hall, NJ, 1996.
                       11. Zhou, K. and Doyle, J.C., Essentials of Robust Control, Prentice-Hall, NJ, 1998.










































                       ©2002 CRC Press LLC
   932   933   934   935   936   937   938   939   940   941   942