Page 115 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 115

102                                        Transient Vibration   Chap. 4









                                   -Fr                               Figure 4.4-3.
                                  The  response  to the second  step function started at  i   is
                                                  ^   =  -  [1  -   coso)„(i  -   t^)]   (4.4-5)

                             and by adding, the response  in the second interval  t  >   becomes
                                            kx
                                            ^   =  {[1  -   cos«„i]  -   [1  -   cos W„(i  -  i,)]}
                                               =  -cos (Oj  +  cos   -   ti)   t  >  ti  (4.4-6)
                                  Half-sine pulse.  For a pulse of time duration  ij, the excitation  is
                                                             Tit
                                                 F{t)  =  Fqsin —    f ort <

                                                             h
                                                      =  0         for t  >              (4.4-7)
                             and the differential equation of motion  is

                                                X  + o)tx   sin TTt/t^  t  <  t,         (4.4-8)
                                                          m
                                                                                         ution
                             The  general solution  is the sum of the free vibration and the particular solution
                                              ,  .   ^                    sin pi
                                            x(t)  = Asmco^t  -h B cos   H------- =------j  (4.4-9)
                                                                     -
                                                                       ^   0)^- p
                             where p  = ir/t^.  To satisfy the initial conditions  x(0)  = i(0)  =  0, we find
                                                                         P_
                                                                   Fn
                                             B  =  0  and    A  =  -     ( ^ r
                                                                      1

                             and the previous solution reduces to
                                                 _  £_

                                                        sm    +           sin pt
                                       ( f ) =
                                                  \^n I             I "n
                                                            In t   /   \  .  77/
                                                r   2ij      T    \  T  ]   il   i  <  it  (4.4-10)
                                               2ij   T
   110   111   112   113   114   115   116   117   118   119   120