Page 193 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 193

180                              Properties of Vibrating Systems   Chap. 6





                                                                     Figure  6.4-1.  Beam  with  arbitrary
                                                                     end  displacements.
                              terms of the  superposition  of four displaeements taken  separately,  as shown  in  Fig.
                              6.4-2.  Shown  also  are  the  end  forces  and  moments  required  to  maintain  the
                              equilibrium  of the  separate  displacements,  which  can  be  simply  determined  by  the
                              area-moment  method.  They  relate  to  the  following  stiffness  matrix:
                                                 FA     fcii  ^12  k 13  kx4~ i F
                                                M,      ^21 ^22 F ,   A 24
                                                        ^31 k^2           <
                                                 F2              ^33 ^34 II2
                                                Mj ^ J  _^41 A: 42  ^43 ^44 _i^2,

                              where  each  column  represents  the  force  and  moment  required  for  each  of  the
                              displacements  taken  separately.  The  positive  sense  of  these  coordinates  is  arbi­
                              trary;  however,  the  configuration  shown  in  Fig.  6.4-1  conforms  to  that  generally
                              used  in  the  finite  element  method.
                                               ^  ]Z E I
                                              cl                                   6 E/
                                                                                    „2  ^1
                                                                             V  12E7
                                                                              E=— 5- 1/1
                                                                                 i ^


                                     M . 5 S e , ( _ U ^
                                                                              0
                                                                                 ^2  1
                                                                                   6 EJ
                                                 12EJ                           /W=  ,2  ^2

                                                                                  12EJ
                                                                                   .3  ''2

                                                                         M -— e^
                                               1    0^  ^
                                       _  Z E I
                                     M
                                                                                 6£

                                              Figure 6.4-2.  Stiffness  of beam  element.
   188   189   190   191   192   193   194   195   196   197   198