Page 281 - Thermodynamics of Biochemical Reactions
P. 281

Thennodynamics of Biochemical  Reactions at Specified pH   281



                calcdI-hnat [ speciesmat-] : =
                 Module[{dHzero, zi, nH, dhfnsp, dGzero, pHterm, isenth, dgfnsp, dGreactant, ri},
                   (*This program produces the function of ionic strength  (is) that gives
                     the standard transformed enthalpies of fonnation of the specie at
                     298.15  K.  It then calculates the standard transformed Gibbs energy for
                     the reactant and the equilibrium mole fractions of the species.  The
                     function of pH and ionic strength for the standard transformed enthalpy
                     of formation of the reactant is calculated by a dot product.  The
                     input is a matrix that gives the standard Gibbs energy of formation,
                    the standard enthalpy of formation, the electric charge'and  the number of
                     hydrogen atoms in the species in the reactant.  There is a row in the matrix
                     for each species of the reactant.  Energies are expressed in kJ molA-l.*)
                     {dGzero, dHzero, zi,  nH)  = Transpose[speciesmat] ;
                     isenth=1.4775* ((zi"2) -nH)*(isA.5) /  (1+1.6*isA.5);
                     dhfnsp  dHzero+isenth;
                   (*Now calculate the functions for
                     the standard Gibbs energies of formation of the species.*)
                   pHterm  = nH* 8.31451 * .29815 *Log [lo A -pH] ;
                   gpfnsp = dGzero-pHterm-isenthe (2.91482/1.4775);
                   (*Now calculate the standard
                     transformed Gibbs energy of formation for the reactant.*)
                   dGreactant  =  -8.31451* .29815*Log[Apply[Plus, Exp[-l*gpfnsp/ (8.31451* .29815)]]];
                   (*Now calculate the equilibrium mole fractions of the species
                      in the reactant and the mole fraction-weighted average of the
                      functions for the standard transformed enthalpies of the species.*)
                   ri  = Exp [ (dGreactant - gpfnsp) /  (8.31451 * -29815) ] ;
                   ri.dhfnsp]

                fnh=calcdHmat[atpspl/.is->.25/.pH->7
                -3616.89

                calcdHTgp [speciesmat-I  : =
                Module[{dGzero,  dGzeroT,dHzero,zi,  nH, gibbscoeff,pHterm,  isterm,gpfnsp,dGfnl,(*This
                program first produces the function of T  (in Kelvin), pH and ionic strength  (is) that
                gives the standard transformed Gibbs energy of formation of a reactant  (sum of
                species).  It then uses the Gibbs-Helmholtz equation to calculate the function for the
                standard transformed enthalpy of formation of the pseudoisomer group.  The input
                speciesmat is a matrix that gives the standard Gibbs energy of formation at  298.15  K,
                the standard enthalpy of formation at 298.15  K,  the electric charge, and the number of
                hydrogen atoms in each species. There is a row in the matrix for each species of the
                reactant. gpfnsp is a list of the functions for the transformed Gibbs energies of the
                species.  Energies are expressed in kJ molA-l.  The value of the standard transformed
                enthalpy of formation can be calculated at any temperature in the approximate range
                273.15  K to 313.15  K,  any pH in the range 5  to 9,  and any ionic strength in the range
                0 to 0.35  m by use of the assignment operator(/.).*)
                 {dGzero,dHzero,zi,nH}=Transpose[speciesmatl;
                gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2+4.95l99*lOA-8*tA3;
                dGzeroT=dGzero*t/298.15+dXizero*(l-t/298.15);
                pHterm =  nH*8.31451*(t/1000)*Log[1OA-pHI;
                istermG =  gibbscoeff*((ziA2) -  nH)*(isA.5)/(1 +  1.6*isA.5);
                gpfnsp=dGzeroT - pHterm -  istermG;
                dGfn=-8.31451*(t/100O)*Log[App~y[Plus,Exp[-l*gpfnsp/(8.3l45l*(t/lOOO~~lll;
                -tA2*DtdGfn/t,tll



                 -3616.89
   276   277   278   279   280   281   282   283   284   285   286