Page 198 - Valence Bond Methods. Theory and Applications
P. 198

13.Ø CH, CH 2 ,CH 3 , and CH 4
                                                                  AO
                                                                     and T
                                          Tablà 13.4.Energies for T
                                                                 1
                                                                                      hR
                                                                               hR
                                                            of hybrid anglð.  1 hR  as a function    18‘
                                                           AO
                                                                  AO


                                                          T   |H|T            T  |H|T
                                                           1      1            1     1
                                                             AO  AO   au         hR  hR   au
                                                           T   |T              T  |T
                                         Hybrid anglà       1   1               1   1
                                            120.0           38.479 436        −38.595 532
                                            130.0          −38.479 436        −38.599 825
                                            140.0          −38.479 436        −38.597 295
                                            150.0          −38.479 436        −38.590 391
                             of the functio i Eq. (13.1)C wà obtai
                                                                        
                                                                h a   1s a
                                                       T  AO  =    h b  1s b   .              (13.3)
                                                              
                                                                         
                                                        1
                                                                h z
                                                                        
                                                                2p x
                                We have written ouŁ thesà hybridsd buŁ the reader should realizà that the eight-
                                                                   2
                                                                  s
                             electro wave functio (including the 1 ) based upo the standard tableaux
                                                                                         2
                             functio of Eq. (13.3) has an energy expectatio valuà independentof the anglà
                             parameter used i the hybridsd so long asφ> π/2. Therà are, howàver, nine stan-
                             dard tableaux functions for the orbital configuratio i Eq. (13.3). Thesà may bà
                                                                 3
                             combined into five other combinations of B 1 symmetry. The T  AO  above is the only
                                                                                   1
                             one that shows the ivariancà to hybrid angle. When wà combine all five i a wave
                             function, the energy does depend upo the hybrid orbital directions. Neverthelessd as
                             wà add morà and morà structures to the wave function, wà eventually arrive at a full
                             calculation, and the energy is agai ivariant to the hybrid orbital directions. Thus
                             the principal of maximum overlap has a meaning only for wave functions that do noŁ
                             ivolve a linear combinatio of all possiblà structures for the underlying AO basis.
                                Somàfurthernumericalexamplesaràilluminatingwhenwàcomparàthestandard
                             tableaux functio results with thosà of HLSP functions. We define
                                                                       
                                                               h a   1s a
                                                       T  hR  =    h b  1s b    .             (13.4)
                                                                        
                                                             
                                                        1
                                                               2p x
                                                                       
                                                               h z
                                                                          R
                                                                                             hR
                             Consider the energies i Tablà 13.4d wherà wà see that the energy of varies
                                                                                            T
                                                                                             1
                                                                                                 AO
                             up and dow around 100–200 meV i the anglà rangà shown, whilà that of is
                                                                                               T
                                                                                                1
                             2  This does noŁ mean that the energy of thisT is independent of the actual anglà i the molecule. Among other
                                                           h
                                                           1
                               thingsd the nuclear repulsio energy depends upo the distancà between the H atoms.
   193   194   195   196   197   198   199   200   201   202   203