Page 146 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 146
122 Cha pte r F o u r
9. Y. J. Chen, W. P. Chen, and E. Burstein, “Surface-Electromagnetic-Wave-
Enhanced Raman Scattering by Overlayers on Metals,” Physical Review
Letters, 36:1207–1210, 1976.
10. S. M. Mansfield, G. S. Kino, “Solid Immersion Microscope,” Applied Physics
Letters, 57:2615–1616, 1990.
11. S. M. Mansfield, W. R. Studenmund, G. S. Kino, and K. Osato, “High-Numerical-
Aperture Lens System for Optical Storage,” Optics Letters, 18:305–307, 1993.
12. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-
Field Optical Data Storage Using Solid Immersion Lens,” Applied Physics Letters,
65:388–390 1994.
13. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of Numerical
Aperture 2.0 Using a Gallium Phosphide Solid Immersion Lens,” Applied
Physics Letters, 75:4064–4066, 1999.
14. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High Collection
Efficiency in Fluorescence Microscopy with a Solid Immersion Lens,” Applied
Physics Letters, 75:1667–1669, 1999.
15. C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menéndex. “Raman Imaging
of Patterned Silicon Using a Solid Immersion Lens,” Applied Physics Letters,
73:2275–2277, 1998.
16. T. D. Milster, “Near-Field Optics: A New Tool for Data Storage,” Proceeding of
IEEE, 88:1480–1490, 2000.
17. N. J. Harrick, “Study of Physics and Chemistry of Surfaces from Frustrated
Total Internal Reflections,” Physical Review Letters, 4:224–226, 1960.
18. J. Fahrenfort, “Attenuated Total Reflection: A New Principle for the Production
of Useful Infra-red Reflection Spectra of Organic Compounds,” Spectrochimica
Acta, 17:698–709, 1961.
19. N. J. Harrick, M. Milosevic, and S. L. Berets, “Advances in Optical Spectroscopy:
The Ultra-Small Sample Analyzer,” Applied Spectroscopy, 45(6):944–948, 1991.
20. J. A. Reffner, C. C. Alexay, R. W. Hornlein, “Design of Grazing Incidence and
ATR Objectives for FT-IR Microscopy,” Proceeding of SPIE-International Society
for Optical Engineering 1575 (8th International Conference on Fourier Transform
Spectroscopy), 301–302, 1992.
21. T. Nakano, and S. Kawata, “Evanescent Field Microscope for Super-Resolving
Infrared Micro-Spectroscopy,” Bunko Kenkyu, 41:377–384, 1992.
22. T. Nakano, and S. Kawata, “Evanescent-Field Scanning Microscope with
Fourier-Transform Infrared Spectrometer,” Scanning, 16:368–371, 1994.
23. Y. Esaki, K. Nakai, and T. Araga, “Development of Attenuated Total Reflection
Infrared Microscopy and Some Applications to Microanalysis of Organic
Materials,” Toyota Chuo Kenkyusho R&D Rebyu, 30(4):57–64, 1995.
24. T. Tajima, S. Takeuchi, Y. Suzuki, T. Tsuchibuchi, and K. Wada, “Mapping
Techniques for FTIR Microspectroscopy,” Shimadzu Hyoron, 53(1):55–59, 1996.
25. L. Lewis, and A. J. Sommer, “Attenuated Total Internal Reflection
Microspectroscopy of Isolated Particles: An Alternative Approach to Current
Methods,” Applied Spectroscopy, 53(4):375–380, 1999.
26. L. Lewis, and A. J. Sommer, “Attenuated Total Internal Reflection Infrared
Mapping Microspectroscopy of Soft Materials,” Applied Spectroscopy,
54(2):324–330, 2000.
27. A. J. Sommer, and J. E. Katon, “Diffraction-Induced Stray Light in Infrared
Microspectroscopy and its Effect on Spatial Resolution,” Applied Spectroscopy,
45(10):1633–1640, 1991.
28. N. E. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott,
and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared
Focal-Plane Detector,” Analytical Chemistry, 67(19):3377–3381, 1995.
29. L. H. Kidder, I. W. Levin, E. N. Lewis, V. D. Kleiman, and E. J. Heilweil, “Mercury
Cadmium Telluride Focal-Plane Array Detection for Mid-Infrared Fourier-
Transform Spectroscopic Imaging,” Optics Letters, 22(10):742–744, 1997.
30. A. J. Sommer, L. Tisinger, G. Story, and C. Marcott, “Attenuated Total Internal
Reflection Infrared Microspectroscopy with an Imaging Infrared Microscope,”
Presented at the Pittsburgh Conference, New Orleans, La., March 2000.