Page 81 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 81
Algal Cells, Cartilage, and IRENI 57
19. M. J. Walsh, M. J. Nasse, F. N. Pounder, V. Macias, A. Kajdacsy-Balla,
C. J. Hirschmugl, and R. Bhargana, WIRMS 2009 3d International Workshop on
Infrared Microscopy and Spectroscopy with Accelerator Based Sources, edited
by A Pedrosi-Cross and B. E. Billingham, AIP Proceedings, 105–107, 2010.
20. E. Levenson, P. Lerch, and M. C. Martin, “Spatial Resolution Limits for
Synchrotron-Based Spectromicroscopy in the Mid- and Near-Infrared,” Journal
of Synchrotron Radiation, 15:323, 2008.
21. G. L. Carr, “Resolution Limits for Infrared Microspectroscopy Explored with
Synchrotron Radiation,” Review of Scientific Instruments, 72:1613, 2001.
22. M. J. Nasse, R. Reininger, T. Kubala, S. Janowski and C. Hirschmugl,
“Synchrotron Infrared Microspectroscopy Imaging Using a Multi-Element
Detector (IRMSI-MED) for Diffraction-Limited Chemical Imaging,” Nuclear
Instruments and Methods in Physics Research A, 582:107–110, 2007.
23. C. Hirschmugl, “IRENI,” Synchrotron Radiation News, 21:24, 2008.
24. Rosenthal A. “Update in Calcium Deposition Diseases,” Current Opinion in
Rheumatology, 19:158–162, 2007.
25. W. Duncan and G. P. Williams, “Infrared Synchrotron Radiation from Electron
Storage Rings,” Applied Optics, 22:2914, 1983.
26. G. P. Williams, C. J. Hirschmugl, E. M. Kneedler, E. A. Sullivan, D. P. Siddons,
Y. J. Chabal, F. Hoffmann, and K. D. Moeller, “Infrared Synchrotron Radiation
Measurements at Brookhaven,” Review of Scientific Instruments 60:2176–2178,
1989.
27. G. L. Carr, J. A. Reffner, and Williams, “Performance of an Infrared Spectrometer
at the NSLS,” Review of Scientific Instruments, 66:1490–1492, 1995.
28. G. L. Carr, M. Hanfland, and G. P. Williams, “Mid Infrared Beamline at the
National Synchrotron Light Source Port U2B,”Review of Scientific Instruments,
66:1643–1645, 1995.
29. R. J. Hemley, H. K. Mao, A. F. Goncharov, M. Hanfland, and V. V. Struzhkin,
“Synchrotron Infrared Spectroscopy to 0.15 eV of H and D at Megabar
2
2
Pressures,”Physics Review Letters, 76:1667–1671, 1996.
30. G. L. Carr, O. Chubar, and P. Dumas, “Multichannel Detection with a
Synchrotron Light Source: Design and Potential,” in Spectrochemical Analysis
using Multichannel Infrared Detectors, Analytical Chemistry Series, In: Rohit
Bhargava and Ira Levin (eds.), Blackwell Publishing Oxford, England, 2005.
31. D. F. Edwards and E. Ochoa, “Infrared Refractive Index of Diamond,” Journal
of the Optical Society of America, 71:607–608, 1981.
32. ISP Optics Corporation. http://www.ispoptics.com/OpticalMaterialsSpecs
.htm. Accessed January 27, 2009.
33. PIKE Technologies, Madison, Wis.
34. K. Maxwell and G. N. Johnson, “Chlorophyll Fluorescence—a Practical Guide,”
Journal of Experimental Botany, 51:659–668, 2000.
35. R. A. Anderson, S. L. Morton, and J. P. Sexton, “Provasoli-Guillard National
Center for Culture of Marine Phytoplankton 1997 List of Strains,” Journal of
Phycology, 33:4–7, 1997.
36. M. J. Nasse, E. Mattson, C. J. Hirschmugl, WIRMS 2009 3rd International Workshop
on Infrared Microscopy and Spectroscopy with Accelerator Based Sources, edited
by A Pedrosi-Cross and B. E. Billingham, AIP Proceedings, (2010) 105–107.
37. L. Miller, C. Carlson, G. Carr, G. Williams and M. Chance, “Synchrotron Infrared
Microspectroscopy As a Means of Studying the Chemical Composition of Bone:
Application to Osteoarthritis,” SPIE, 3135:141–148, 1997.
38. M. M. W. Sato, N. Miyoshi, Y. Imamura, S. Noriki, K. Uchida, S. Kobayashi,
T. Yayama, and K. Negoro, “Hydroxyapatite Maturity in the Calcified
Cartilage and Underlying Subchondral Bone of Guinea Pigs with Spontaneous
Osteoarthritis: Analysis by Fourier Transform Infrared Microspectroscopy,”
Acta Histochem Cytochem, 397:101–107, 2004.
39. C. Chappard, F. Peyrin, A. Bonnassie, G. Leminer, B. Brunet-Imbault, E.
Lespessailles, and C. L. Benhamou, “Subchondral Bone Microarchitectural
Alterations in Osteoarthritis: A Synchrotron Micro-Computed Tomography
Study,” Osteoarthritis Cartilage, 14:215–223, 2006.