Page 80 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 80
56 Cha pte r T w o
References
1. N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and
G. P. Williams, “Highly Resolved Chemical Imaging of Living Cells by Using
Synchrotron IR Microspectrometry,” Proceedings of the National Academy of
Sciences, 95:4837, 1998.
2. R. Y. Huang, L. M. Miller, C. S. Carlson, and M. R. Chance, “In Situ Chemistry
of Osteoporosis Revealed by Synchrotron IR Microspectroscopy,” Bone, 33:
514–521, 2003.
3. J. Kneipp, L. M. Miller, M. Joncic, M. Kittel, P. Laasch, M. Beekes, and D.
Naumann, “In Situ Identification of Protein Structural Changes in Prion-Infected
Tissue,” BioChem et Biophys Acta Molecular Basis of Disease 139:152, 2003.
4. P. Dumas, N. Jamin, J. L. Teillad, L. M. Miller, and B. Beccard, “Imaging
Capabilities of Synchrotron IR Microspectroscopy,” Faraday Discuss, 126:289,
2004.
5. E. Gazi, J. Dwyer, N. P. Lockyer, J. Miyan, P. Gardner, C. Hart, M. Brown, and N.
W. Clarke, “Fixation Protocols for Subcellular Imaging by Synchrotron-Based
Fourier Transform IR Microspectroscopy,” Biopolymers, 77:18, 2005.
6. P. Heraud, B. R. Wood, M. J. Tobin, J. Beardall, and D. McNaughton. “Mapping of
Nutrient-Induced Biochemical Changes in living Algal Cells Using Synchrotron
Infrared Microspectroscopy,” FEMS Microbiology Letters, 249:219–225, 2005.
7. C. Krafft and V. Sergo, “Biomedical Applications of Raman and Infrared
Spectroscopy to Diagnose Tissues,” Spectroscopy—an International Journal,
20:195, 2006.
8. H.-Y. N. Holman and M. C. Martin, “Synchrotron Radiation Infrared
Spectromicroscopy: A Noninvasive Chemical Probe for Monitoring
Biogeochemical Processes,” Advances in Agronomy, 90:79, 2006.
9. L. M. Miller and P. Dumas, “Chemical Imaging of Biological Tissue with
Synchrotron Infrared Light,” Biochimica et Biophysica Acta—Biomembranes,
1758:846, 2006.
10. R. Bhargava, “Towards a Practical Fourier Transform Infrared Chemical
Imaging Protocol for Cancer Histopathology,” Analytical and Bioanalytical
Chemistry, 389:1155, 2007.
11. G. Srinivasan and R. Bhargava, “Fourier Transform-Infrared Spectroscopic
Imaging: The Emerging Evolution from a Microscopy Tool to a Cancer Imaging
Modality,” Spectroscopy, 22:30, 2007.
12. A. Boskey and N. P. Camacho, “FT-IR Imaging of Native and Tissue-Engineered
Bone and Cartilage,” Biomaterials, 28:2465, 2007.
13. M. J. Walsh, M. J. German, M. Singh, H. M. Pollock, A. Hammiche, M. Kyrgiou,
H. F. Stringfellow, E. Paraskevaidis, P. L. Martin-Hirsch, and F. L. Martin, “IR
Microspectroscopy: Potential Applications in Cervical Cancer Screening,”
Cancer Letters, 246:1, 2007.
14. M. Rak, M. R. Del Bigio, S. Mai, D. Westaway, and K. Gough, “Dense-Core
and Diffuse A Beta Plaques in TgCRND8 Mice Studied with Synchrotron FTIR
Microspectroscopy,” Biopolymers, 87:207, 2007.
15. A. Kretlow, Q. Wang, M. Beekes, D. Naumann, and L. Miller, “Changes in
Protein Structure and Distribution Observed at Pre-Clinical Stages of Scrapie
Pathogenesis,” Biochimica et Biophysica Acta—Molecular Basis of Disease, 1782:559,
2008.
16. A. K. Rosenthal, E. Mattson, C. M. Gohr, and C. J. Hirschmugl, “Characterization
of Articular Calcium-Containing Crystals by Synchrotron FTIR,” Osteoarthritis
and Cartilage, 16:1395, 2008.
17. S. Kaminskyj, K. Jilkine, A. Szeghalmi, and K. Gough, “High Spatial Resolution
Analysis of Fungal Cell Biochemistry—Bridging the Analytical Gap Using
Synchrotron FTIR Spectromicroscopy,” FEMS Microbiology Letters, 284:1,
2008.
18. M. J. Nasse, S. Ratti, M. Giordano, and C. J. Hirschmugl, “Demantable Flow
Liquid Chamber for In Vivo Infrared Microspectroscopy of Biological Specimen,”
Applied Spectroscopy, 63:1181–1186, 2009.