Page 176 - Fluid Power Engineering
P. 176

Advanced W ind Resource Assessment       149


               Date             EWS       Prob (EWS)     ln(-ln(Prob))
               1/15/1997        20.2         0.05            1.11
               1/4/1997         20.3         0.10            0.86
               12/30/1998       20.4         0.14            0.67
               3/26/1999        20.5         0.19            0.51
               7/1/1997         20.6         0.24            0.36
               11/22/1998       20.7         0.29            0.23
               10/19/1995       20.8         0.33            0.09
               12/17/1996       20.8         0.38           −0.04
               4/18/1995        20.9         0.43           −0.17
               10/11/1997       21.4         0.48           −0.30
               4/6/1997         21.7         0.52           −0.44
               1/18/1996        22           0.57           −0.58
               12/30/1997       22           0.62           −0.73
               12/8/1995        22.2         0.67           −0.90
               3/24/1996        23.2         0.71           −1.09
               10/27/1995       23.5         0.76           −1.30
               11/10/1998       24.1         0.81           −1.55
               4/25/1996        24.7         0.86           −1.87
               10/29/1996       25           0.90           −2.30
               2/10/1996        28           0.95           −3.02
              TABLE 8-1  Listing of the Extreme Events for Example with 4-Year Time Series


                    estimate of EWS. Smaller number of points increases uncer-
                    tainty in the estimate of EWS.

              Use Eqs. (8-2) and (8-3) to solve for values of a and b. An alternative
              is to assign probability to each event and create a Gumbel plot, as
              described in example below and illustrated in Table 8-1 and Fig. 8-1.
              AlinearregressionmethodmaybeusedintheGumbelplottoestimate
              values of a and b by fitting a straight line to the extreme points.
                 Compute 50-year and other n-year extreme values by assuming
              that Eq. (8-1) is the annual extreme value distribution, and a n-year
              event occurs with an annual probability of 1/n. Therefore, the proba-
              bility of not exceeding the EWS in n years is:

                                                  1

                               prob (EWS, n) = 1 −                 (8-4)
                                                  n
   171   172   173   174   175   176   177   178   179   180   181