Page 181 - Wind Energy Handbook
P. 181

BIBLIOGRAPHY                                                           155


             Jones, W. P., (1945). ‘Aerodynamic forces on wings in non-uniform motion’, ARCR R&M
               2117.
             Kinner, W., (1937). ‘The principle of the potential theory applied to the circular wing’. Ing.
               Arch., VIII, 47–80. (Translated by Flint, M., R.T.P. Translation No. 2345.)
             Lindenburg, C., (1996). ‘Results of the PHATAS-III development’, International Energy
               Agency, 28th Meeting of Experts, Lyngby, Denmark.
             Lock, C. N. H., (1924). ‘Experiments to verify the independence of the elements of an airscrew
               blade’. ARCR R&M No. 953.
             Loewy, R. G., (1957). ‘A two-dimensional approach to the unsteady aerodynamics of rotary
               wings’. J. Aerospace Sci., 24,2.
             Mangler, K. W. and Squire, H. B., (1950). ‘The induced velocity field of a rotor’. ARCR R&M
               No. 2642.
             Meijer Drees, J., (1949). A theory of airflow through rotors and its application to some
               helicopter problems’. J. Heli. Ass. G.B., 3, 2, 79–104.
             Miller, R. H., (1964). ‘Rotor blade harmonic air loading’. AIAA Journal, 2,7.
             Øye, S. (1992). ‘Induced velocities for rotors in yaw’. Proceedings of the Sixth IEA Symposium.
               ECN, Petten, Holland.
             Peters, D. A., Boyd, D. D. and He, C. J., (1989). ‘Finite state induced flow model for rotors in
               hover and forward flight’. J. Amer. Heli. Soc., 34, 4, 5–17.
             Pitt, D. M. and Peters, D. A., (1981). ‘Theoretical prediction of dynamic inflow derivatives’.
               Vertica, 5, 21–34.
             Ronsten, G., (1991). ‘Static pressure measurements in a rotating and a non-rotating 2.35 m
               wind turbine blade’. Proceedings of the EWEC Conference.
             Schepers, J. G. and Snel, H., (1995). ‘Joint investigation of dynamic inflow effects and
               implementation of an engineering method’. Report: ECN-C-94-107. ECN, Petten, Holland.
             Snel, H. et al., (1993). ‘Sectional prediction of three-dimensional effects for stalled flow on
               rotating blades and comparison with measurements’. Proceedings of the EWEC Conference.
             Suzuki, A. and Hansen, A. C., (1999). ‘Generalized dynamic wake model for Yawdyn’. AIAA
               Wind Symposium, AIAA-99-0041.
             Theodorsen, T., (1935). ‘General theory of aerodynamic instability and the mechanism of
               flutter’. NACA Report 496.
             Tuckerman, L. B., (1925). ‘Inertia factors of ellipsoids for use in airship design’, NACA Report
               Number 210.
             Van Bussel, G. J. W., (1995). The aerodynamics of horizontal-axis wind-turbine rotors explored with
               asymptotic expansion methods, Ph.D. Thesis, Delft University of Technology, Holland.
                               €
             Wagner, H., (1925). ‘UUber die Entstahung des dynamischen Auftriebes von Tragflu ¨gel’,
               Zeischrift fu ¨r angewandte Mathematik und Mechanik, 5,1.
             Wilson, R. E. and Lissaman, P. B. S., (1974). ‘Applied aerodynamics of wind-power
               machines’. NTIS: PB-238-595, Oregon State University, USA.
             Wood, D. H., (1991). ‘A three-dimensional analysis of stall-delay on a horizontal-axis wind
               turbine’. J. Wind Eng. Indl. Aerodyn., 37, 1–14.
             Young, A. D. and Squire, H. B., (1938). R&M No. 1838.



             Bibliography

             Abbott, I. H. and von Doenhoff, A. E., (1959). Theory of wing sections. Dover, New York, USA.
             Anderson, J. D., (1991). Fundamentals of aerodynamics, Second edition. McGraw-Hill, Singapore.
             Barnard, R. H. and Philpot, D. R., (1989). Aircraft flight - a description of the physical principles of
               aircraft flight. Longmans, Singapore.
   176   177   178   179   180   181   182   183   184   185   186