Page 343 - Wind Energy Handbook
P. 343

EFFECT OF ACROSS-WIND TURBULENCE DISTRIBUTION                          317

                                      "    ð R          # 2     2
                                ó  2  ¼ C f rU  ì 1 (r)c(r)dr  S u (n 1 )  ð n 1  (A5:10)
                                 x1                                2
                                            0                  2ä k 1
             For comparison, the first mode component, x 1 , of the steady response is obtained by
                                    1
                                       2
             setting ø ¼ 0 and q 0 (r) ¼ rU C f c(r) in Equation (A5.3), yielding
                                    2
                                                   ð
                                                 1  R
                                          1  2
                                     x 1 ¼ rU C f    ì 1 (r)c(r)dr               (A5:11)
                                          2
                                                 k 1 0
             Hence the ratio of the standard deviation of the first mode resonant response to the
             first mode component of the steady response is
                                           s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        ð    n 1 S u (n 1 )  ð  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                             ó x1   ó u                 ó u
                                 ¼ 2   p ffiffiffiffiffiffi  2   ¼ 2   p ffiffiffiffiffiffi  R u (n 1 )  (A5:12)
                                    U   2ä     ó         U   2ä
                              x 1                u
             Note that towards the upper tail of the power spectrum of along wind turbulence,
                                                         p
                                         p
                                                           ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                           ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                         1
             where n 1 is likely to be located,  R u (n 1 ) tends to  0:1417=(nL u =U) 3.
                                                                     x
             A5.4    Effect of Across-wind Turbulence Distribution on
                     Resonant Displacement Response


             In the foregoing treatment, the wind was assumed to be perfectly correlated along
             the blade. The implications of removing this simplifying assumption will now be
             examined.
               The fluctuating load on the blade, q(r, t), becomes C f rUu(u, r)c(r) per unit length,
             and the generalized fluctuating load with respect to the first mode becomes
                                  ð  R                  ð R
                           Q 1 (t) ¼  ì 1 (r)q(r, t)dr ¼ C f rU  u(r, t)c(r)ì 1 (r)dr  (A5:13)
                                   0                     0

             The standard deviation, ó Q ,of Q(t) is given by
                     ð                    ð  " ð               # " ð                 #
                    1  T  2             1  T  R                   R
                2
             ó Q1 ¼     Q (t)dt ¼ (rUC f ) 2    u(r, t)c(r)ì 1 (r)dr  u(r9, t)c(r9)ì 1 (r9)dr9 dt
                         1
                    T  0                T  0  0                   0
                               "                  #
                          ð ð     ð T
                            R R
                  ¼ (rUC f ) 2  1   u(r, t)u(r9, t)dt c(r)c(r9)ì 1 (r)ì 1 (r9)dr dr9  (A5:14)
                           0  0  T  0
             Now the expression within the square brackets is the cross correlation function,
             k u (r, r9, ô) ¼ Efu(r, t)u(r9, t þ ô)g with ô set equal to zero. The cross correlation
             function is related to the cross spectrum, S uu (r, r9, n), as follows:
   338   339   340   341   342   343   344   345   346   347   348