Page 347 - Wind Energy Handbook
P. 347

RESONANT ROOT BENDING MOMENT                                           321


               Defining M 1 (t) as the fluctuating root bending moment due to wind excitation of
             the first mode, we have
                         ð                 ð                         ð
                          R                 R                         R
                                                                 2
                                                  2
                 M 1 (t) ¼  m(r)€ x 1 (t, r)r dr ¼  m(r)ø x 1 (t, r)r dr ¼ ø f 1 (t)  m(r)ì 1 (r)r dr
                               x
                                                  1              1
                         0                  0                         0
                                                                                 (A5:26)
             Hence the standard deviation of M 1 (t),
                                                 ð R
                                             2
                                     ó M1 ¼ ø ó x1  m(r)ì 1 (r)r dr              (A5:27)
                                             1
                                                  0
             The steady root bending moment,
                                    ð R                     ð R
                                          2
                                                         2
                                                      1
                               M ¼    1 rU C f c(r)r dr ¼ rU C f  c(r)r dr       (A5:28)
                                      2               2
                                     0                       0
             Hence the ratio
                                                 ð
                                                  R
                                             2
                                            ø ó x1  m(r)ì 1 (r)r dr
                                             1
                                     ó M1         0
                                          ¼         ð                            (A5:29)
                                      M              R
                                              1  2
                                              2 rU C f  c(r)r dr
                                                     0
             Substituting the expression for ó x1 from Equation (A5.22), we obtain
             ó M1
                 ¼
              M
                        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                               ð ð
                     ð    n 1 S u (n 1 )  R     R R
              2
             ø rUC f p ffiffiffiffiffiffi      m(r)ì 1 (r)r dr  exp[ Cjr   r9jn 1 =U]c(r)c(r9)ì 1 (r)ì 1 (r9)dr dr9
              1
                     2ä    k 1   0              0  0
                                                 ð  R
                                           1  2    c(r)r dr
                                           2 rU C f
                                                  0
                                                                                 (A5:30)
                                       2
                                                          2
             Noting that R u (n) ¼ nS u (n)=ó , and that k 1 ¼ m 1 ø , this simplifies to
                                       u
                                                          1
                                   ð R
                                     m(r)ì 1 (r)r dr
                         ð  p ffiffiffiffiffiffiffiffiffiffiffiffi
             ó M1    ó u            0
                 ¼ 2    p ffiffiffiffiffiffi  R u (n)  ð
              M      U   2ä             R
                                    m 1  c(r)r dr
                                        0
                                s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                  ð ð
                                   R R
                                       exp [ Cjr   r9jn 1 =U]c(r)c(r9)ì 1 (r)ì 1 (r9)dr dr9  (A5:31)
                                   0  0
   342   343   344   345   346   347   348   349   350   351   352