Page 102 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 102

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap07 Final Proof page 94 3.1.2007 8:47pm Compositor Name: SJoearun




               7/94  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
               Table 7.6 Result of Production Forecast for Example Problem 7.4
                                     Pseudo-
                 Reservoir           pressure
                                        2
                                     8
               pressure (psia)  z  (10 psi =cp)  G p (MMscf)  DG p (MMscf)  q (Mscf/d)  Dt (day)  t (day)
               4,409        1.074     11.90        130
               4,200        1.067     11.14        260         130        1,942      67       67
               4,000        1.060     10.28        385         125        1,762      71      138
               3,800        1.054     9.50         514         129        1,598      81      218
               3,600        1.048     8.73         645         131        1,437      91      309
               3,400        1.042     7.96         777         132        1,277     103      413
               3,200        1.037     7.20         913         136        1,118     122      534
               3,000        1.032     6.47        1,050        137         966      142      676
               2,800        1.027     5.75        1,188        139         815      170      846
               2,600        1.022     5.06        1,328        140         671      209     1,055
               2,400        1.018     4.39        1,471        143         531      269     1,324
               2,200        1.014     3.76        1,615        144         399      361     1,686
               2,000        1.011     3.16        1,762        147         274      536     2,222
                    (43,560)(40)(78)(0:14)(1   0:27)
                                                  9
                G i ¼                     ¼ 3:28   10 scf:  If the flowing bottom-hole pressure is maintained at a level
                            0:004236                     of 1,500 psia during the pseudo–steady-state flowperiod (after
                                                         86 days of transient production), Eq. (7.16) is simplified as
               Assuming a circular drainage area, the equivalent radius of
                                                                                       8
               the 40 acres is 745 ft. The time required for the pressure  (0:17)(78)[m(  p)   1:85   10 ]
                                                                             p

               wave to reach the reservoir boundary is estimated as  q ¼  1424(180 þ 460) ln  745    þ 0
                                                                                     3
                                                                                0:328  4
                                            4
                            (0:14)(0:0251)(1:5   10 )(745) 2  or
                    t pss   1200
                                                                                       8
                                                                           6
                                     0:17                       q ¼ 2:09   10 ½m(  p)   1:85   10 Š,
                                                                             p
                       ¼ 2,065 hours ¼ 86 days:          which, combined with Eq. (7.17), gives the production fore-
                                                         cast shown in Table 7.6, where z-factors and real gas pseudo-
               The spreadsheet program PseudoPressure.xls gives
                                                         pressures were obtained using spreadsheet programs Hall-
                                          9
                                             2
                      m( p i ) ¼ m(4613) ¼ 1:27   10 psi =cp  Yarborogh-z.xls and PseudoPressure.xls, respectively. The
                                                :        production forecast result is also plotted in Fig. 7.6.
                                             2
                                          8
                     m( p wf ) ¼ m(1500) ¼ 1:85   10 psi =cp
               Substituting these and other given parameter values into  Summary
               Eq. (7.15) yields                         This chapter illustrated how to perform production fore-
                                     9
                          (0:17)(78)[1:27   10   1:85   10 ] 8  cast using the principle of Nodal analysis and material
               q ¼
                                          0:17
                 1638(180 þ 460) log (2065) þ log  (0:14)(0:0251)(1:5 10  4 )(0:328) 2   3:23  balance. Accuracy of the forecast strongly depends on
                                                         the quality of fluid property data, especially for the two-
                                                         phase flow period. It is always recommended to use fluid
                ¼ 2,092 Mscf=day:
                                                         properties derived from PVT lab measurements in produc-
               Substituting q ¼ 2,092 Mscf=day into Eq. (7.16) gives  tion forecast calculations.
                                              8
                                    p
                           (0:17)(78)[m(  p)   1:85   10 ]
                     2,092 ¼                     ,
                                            3
                                        745
                          1424(180 þ 460) ln  0:328    þ 0  References
                                            4
                                          2
                                       9
                             p
               which results in m(  p) ¼ 1:19   10 psi =cp. The spread-  craft, b.c. and hawkins, m. Applied Petroleum Reservoir
               sheet program PseudoPressure.xls gives   p ¼ 4,409 psia at  Engineering, 2nd edition. Englewood Cliffs, NJ: Pren-
                                           p
               the beginning of the pseudo–steady-state flow period.  tice Hall, 1991.
                              2,500                                          2,000
                                                                             1,800
                             Production Rate (Mscf/day)  1,500  q (Mscf/d)   1,200 Cumulative Production (MMscf)
                                                                             1,600
                              2,000
                                                                             1,400
                                                                Gp (MMscf)
                                                                             1,000
                                                                             800
                              1,000
                                                                             600
                                                                             400
                               500
                                                                             200
                                 0                                           0
                                  0       500     1,000   1,500   2,000    2,500
                                            Pseudosteady Production Time (days)
                                Figure 7.6 Result of production forecast for Example Problem 7.4.
   97   98   99   100   101   102   103   104   105   106   107