Page 143 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 143

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap11 Final Proof page 138  3.1.2007 8:54pm Compositor Name: SJoearun




               11/138  EQUIPMENT DESIGN AND SELECTION
               11.3.2 Reciprocating Compressors          Pv ¼ RT                            (11:33)
               Figure 11.5 shows a diagram volume relation during gas  or
               compression. The shaft work put into the gas is expressed as
                           0              1              P 1 v 1 ¼ RT 1 :                   (11:34)
                                                                      k
                                                                          k
                   V  2  V  2    ð 2                     Using P 1 n ¼ P 2 n ¼ Pn ¼ constant, which gives
                                                                k
                                          A
               W s ¼  2     1  þ @ P 2 v 2   Pdv   P 1 v 1 ,  (11:29)  1  2
                   2g  2g                                                   k
                                                                          v 1  P 2
                                 1                                           ¼
               where                                                      v 2  P 1
                                                         or
                 W s ¼ mechanical shaft work into the system,
                       ft-lbs per lb of fluid            v 1  P 2  1 k
                 V 1  ¼ inlet velocity of fluid to be compressed, ft/sec  ¼  :              (11:35)
                                                         v 2  P 1
                 V 2  ¼ outlet velocity of compressed fluid, ft/sec
                                    2
                 P 1  ¼ inlet pressure, lb=ft abs        Substituting Eqs. (11.35) and (11.34) into Eq. (11.31) gives
                                     2
                 P 2  ¼ outlet pressure, lb=ft abs        ð 2       "     k 1  #
                                        3
                 n 1  ¼ specific volume at inlet, ft =lb    Pdv ¼  RT 1  P 2  k   1 :       (11:36)
                                         3
                 n 2  ¼ specific volume at outlet, ft =lb.      k   1  P 1
                                                          1
               Note that the mechanical kinetic energy term  V 2g 2  is in  We multiply Eq. (11.33) by n  k 1 , which gives

               ft    lb  to get ft-lbs per lb.
                  lb                                                   k 1      k 1
                Rewriting Eq. (11.29), we can get                   Pv v   ¼ RT v
                                                                      k
                                                                    Pv ¼ RTv  k 1
                                      ð 2                                     ¼ C 1
                   V  2  V  2                                         k
               W s þ  1     2  þ P 1 v 1   P 2 v 2 ¼  Pdv:  (11:30)  Pv    k 1  C 1  0
                   2g  2g                                              ¼ Tv   ¼  ¼ C 1
                                       1                             R          R
                                                         Thus,
               An isentropic process is usually assumed for reciprocating
                                         k
                                   k
                                             k
               compression, that is, P 1 n ¼ P 2 n ¼ Pn ¼ constant,  Tv k 1  ¼ C : 0        (11:37)
                                   1
                                         2
                                                                1
                                 P 1 v k
               where k ¼ . Because P ¼  v k , the right-hand side of Eq.  k         k 1
                      c p
                                   1
                      c v                                Also we can rise Pv ¼ constant to the  k  power. This is
               (11.30) is formulated as
                                                                          k  k 1  0 k 1
                                                                       (Pv ) k ¼ C 1  k
                 ð 2    ð 2          ð 2
                         P 1 v k      dv                                k 1  k 1  0k 1
                 Pdv ¼      1  dv ¼ P 1 v k                            P k v  ¼ C 1  k
                          v k       1  v k
                 1      1            1                   or
                              1 k    2  k                      0 k 1
                     ¼ P 1 v  k  v  ¼   P 1 v 1  [v 1 k    v 1 k ]  C  k  C  00
                                                                    1
                          1
                            1   k   1   k  2  1          n k 1  ¼  1 k 1 ¼  k 1 :           (11:38)
                                 1                            P k  P k
                       P 1 v k  v 1 k
                     ¼   1  1  [v 1 k    v 1 k ]         Substituting Eq. (3.38) into (3.37) gives
                                     1
                                 2
                      1   k v 1 k
                            1
                                                                          C  00
                       P 1 v 1 v 1 k                                    T  1    0
                     ¼      2    1                                         k 1 ¼ C 1
                      1   k v 1 k                                         P k
                            1
                          "        #                     or
                              k 1
                       P 1 v 1  v 1                            0
                     ¼            1 :             (11:31)  T  C    000
                      1   k  v 2                          k 1 ¼  1 00 ¼ C ¼ constant:       (11:39)
                                                                   1
                                                         P k  C 1
               Using the ideal gas law
                                                         Thus, Eq. (11.39) can be written as
               P
                ¼ RT,                             (11:32)  T 1  T 2
               g                                          k 1 ¼  k 1 :                      (11:40)
                                                         P 1 k  P 2 k
                        3
               where g (lb=ft ) is the specific weight of the gas and T (8R)
               is the temperature and R ¼ 53:36 (lb-ft/lb-8R) is the gas  Thus, Eq. (11.40) is written
                           1
               constant, and v ¼ , we can write Eq. (11.32) as      k 1
                           g                              P 2  k  T 2
                                                              ¼   :                         (11:41)
                                                          P 1   T 1
                                                         Substituting Eq. (11.41) into (11.36) gives
                        d                                 ð 2
                      2       c                                  RT 1 T 2
                                                           Pdv ¼         1
                                                                k   1 T 1
                                                           1 ð 2                            (11:42)
                     Pressure                              Pdv ¼  k   1  (T 2   T 1 ):
                                                                 R
                                                           1
                        a                                Therefore, our original expression, Eq. (11.30), can be
                      1                      b
                                                         written as
                                                                V 2  V  2           R
                                                            W s þ  1     2  þ P 1 v 1   P 2 v 2 ¼  (T 2   T 1 )
                       o     m              n                    2g  2g           k   1
                                 Volume                  or
                  Figure 11.5 Basic pressure–volume diagram.
   138   139   140   141   142   143   144   145   146   147   148