Page 274 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 274

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap18 Final Proof page 274 4.1.2007 10:04pm Compositor Name: SJoearun




               18/274  PRODUCTION ENHANCEMENT
               Table 18.1 Flash Calculation with Standing’s Method for k i Values
               Flash calculation
               n v ¼ 0:8791
               Compound              z i              k i           z i (k i   1)=[n v (k i   1) þ 1]
               C 1                 0.6599          6.5255            0.6225
               C 2                 0.0869          1.8938            0.0435
               C 3                 0.0591          0.8552            0:0098
               i-C 4               0.0239          0.4495            0:0255
               n-C 4               0.0278          0.3656            0:0399
               i-C 5               0.0157          0.1986            0:0426
               n-C 5               0.0112          0.1703            0:0343
               C 6                 0.0181          0.0904            0:0822
               C 7þ                0.0601          0.0089            0:4626
               N 2                 0.0194          30.4563           0.0212
               CO 2                0.0121          3.4070            0.0093
               H 2 S               0.0058          1.0446            0.0002
                                                   Sum:              0.0000
               n L ¼ 0.1209
               Compound            x i             y i              x i MW i            y i MW i

               C 1                 0.1127          0.7352           1.8071              11.7920
               C 2                 0.0487          0.0922           1.4633              2.7712
               C 3                 0.0677          0.0579           2.9865              2.5540
               i-C 4               0.0463          0.0208           2.6918              1.2099
               n-C 4               0.0629          0.0230           3.6530              1.3356
               i-C 5               0.0531          0.0106           3.8330              0.7614
               n-C 5               0.0414          0.0070           2.9863              0.5085
               C 6                 0.0903          0.0082           7.7857              0.7036
               C 7þ                0.4668          0.0042           53.3193             0.4766
               N 2                 0.0007          0.0220           0.0202              0.6156
               CO 2                0.0039          0.0132           0.1709              0.5823
               H 2 S               0.0056          0.0058           0.1902              0.1987
               Apparent molecular  23.51                                                80.91
                weight of liquid phase:
               Apparent molecular  0.76
                weight of vapor phase:
               Specific gravity                    water ¼ 1
                of liquid phase:
               Specific gravity    0.81            air ¼ 1
                of vapor phase:
               Input vapor         0.958
                phase z factor:
               Density of liquid phase:  47.19     lb m =ft 3
               Density of vapor phase:  2.08       lb m =ft 3
               Volume of liquid phase:  0.04       bbl
               Volume of vapor phase:  319.66      scf
               GOR:                8,659           scf/bbl
               API gravity of       56
                liquid phase:

                  L 1     q t   q 3                      The effects of looped line on the increase of gas flow rate
               Y ¼  , X ¼      :                  (18:44)
                   L       q 3                           for various pipe diameter ratios are shown in Fig. 18.11.
                                                         This figure indicates an interesting behavior of looping:
               If, D 1 ¼ D 3 , Eq. (18.43) can be rearranged as  The increase in gas capacity is not directly proportional to
                                                         the fraction of looped pipeline. For example, looping of
                         1
                   1                                     40% of pipe with a new pipe of the same diameter will
                      ð 1 þ XÞ 2
               Y ¼           ,                    (18:45)  increase only 20% of the gas flow capacity. It also shows
                         1                               that the benefit of looping increases with the fraction of
                  1
                      1 þ R 2:31 2                       looping. For example, looping of 80% of the pipe with a
                          D
                                                         new pipe of the same diameter will increase 60%, not 40%,
               where R D is the ratio of the looping pipe diameter to the  of gas flow capacity.
               original pipe diameter, that is, R D ¼ D 2 =D 3 . Equation
               (18.45) can be rearranged to solve for X explicitly  Example Problem 18.3 Consider a 4-in. pipeline that is 10
                                                         miles long. Assuming that the compression and delivery
                           1
               X ¼ v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   1:  (18:46)  pressures will maintain unchanged, calculate gas capacity
                                    !
                  u
                  u             1                        increases by using the following measures of improvement:
                  t 1   Y 1                              (a) replace 3 miles of the 4-in. pipeline by a 6-in. pipeline
                             1 þ R 2:31 2                segment; (b) place a 6-in. parallel pipeline to share gas
                                 D
   269   270   271   272   273   274   275   276   277   278   279