Page 63 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 63

Guo, Boyun / Petroleum Production Engineering, A Computer-Assisted Approach  0750682701_chap04 Final Proof page 54 22.12.2006 6:07pm




               4/54  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
               Table 4.3 Result Given by HagedornBrownCorrelation.xls for Example Problem 4.4
               HagedornBrownCorrelation.xls
               Description: This spreadsheet calculates flowing pressures in tubing string based on tubing head pressure using the
               Hagedorn–Brown correlation.
               Instruction: (1) Select a unit system; (2) update parameter values in the Input data section;
               (3) click ‘‘Solution’’ button; and (4) view result in the Solution section and charts.
               Input data                        U.S. Field units  SI units
               Depth (D):                         9,700 ft
               Tubing inner diameter (d ti ):     1.995 in.
               Oil gravity (API):                 40 8API
               Oil viscosity (m o ):              5 cp
               Production GLR (GLR):              75 scf/bbl
               Gas-specific gravity (g g ):       0.7 air ¼1
               Flowing tubing head pressure (p hf ):  100 psia
               Flowing tubing head temperature (t hf ):  80 8F
               Flowing temperature at tubing shoe (t wf ):  180 8F
               Liquid production rate (q L ):     758 stb/day
               Water cut (WC):                    10 %
               Interfacial tension (s):           30 dynes/cm
               Specific gravity of water (g w ):  1.05 H 2 O ¼ 1
               Solution
               Depth                                              Pressure
               (ft)                               (m)             (psia)       (MPa)
               0                                  0               100          0.68
               334                                102             183          1.24
               669                                204             269          1.83
               1,003                              306             358          2.43
               1,338                              408             449          3.06
               1,672                              510             543          3.69
               2,007                              612             638          4.34
               2,341                              714             736          5.01
               2,676                              816             835          5.68
               3,010                              918             936          6.37
               3,345                              1,020           1,038        7.06
               3,679                              1,122           1,141        7.76
               4,014                              1,224           1,246        8.48
               4,348                              1,326           1,352        9.20
               4,683                              1,428           1,459        9.93
               5,017                              1,530           1,567        10.66
               5,352                              1,632           1,676        11.40
               5,686                              1,734           1,786        12.15
               6,021                              1,836           1,897        12.90
               6,355                              1,938           2,008        13.66
               6,690                              2,040           2,121        14.43
               7,024                              2,142           2,234        15.19
               7,359                              2,243           2,347        15.97
               7,693                              2,345           2,461        16.74
               8,028                              2,447           2,576        17.52
               8,362                              2,549           2,691        18.31
               8,697                              2,651           2,807        19.10
               9,031                              2,753           2,923        19.89
               9,366                              2,855           3,040        20.68
               9,700                              2,957           3,157        21.48



                                                                                      2
                                                                                  2
                                                                                    2
                                                                                     z
                                                                                      T
                                                                                     z
               4.4.1 Average Temperature and Compressibility  P 2  ¼ Exp(s)P þ  8f M [Exp(s)   1]Q P     T  2  ,  (4:52)
                                                                                  sc
                                                                                    sc
                                                                   2
                                                                              5
                                                                           2
                                                                                2
                    Factor Method                         wf       hf     p g c D T cos u
                                                                                sc
                                                                              i
               If single average values of temperature and compressibility
               factor over the entire tubing length can be assumed, Eq.  where
               (4.50) becomes
                                                           58g g gL cos u
                                     2
                                  2
                                      2
                                      z
                 T
                 zzR   T dP  g  8f M Q P   z   T  2      s ¼        :                       (4:53)
                                       T
                                                                 T
                                                                zT
                     þ    cos u þ  cs  sc  dL ¼ 0:  (4:51)    g c R  z
                                    5
                                2
               29g g P  g c    p g c D T P 2
                                      2
                                     sc
                                    i
               By separation of variables, Eq. (4.51) can be integrated  Equations (4.52) and (4.53) take the following forms when
               over the full length of tubing to yield   U.S. field units (q sc in Mscf/d), are used (Katz et al., 1959):
   58   59   60   61   62   63   64   65   66   67   68