Page 61 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 61

Guo, Boyun / Petroleum Production Engineering, A Computer-Assisted Approach  0750682701_chap04 Final Proof page 52 22.12.2006 6:07pm




               4/52  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
               Table 4.2 Result Given by Guo-GhalamborBHP.xls for Example Problem 4.3
               Guo-GhalamborBHP.xls
               Description: This spreadsheet calculates flowing bottom-hole pressure based on tubing head pressure and tubing flow
               performance using the Guo–Ghalambor Method.
               Instruction: (1) Select a unit system; (2) update parameter values in the Input data section;
               (3) click ‘‘Solution’’ button; and (4) view result in the Solution section.
               Input data             U.S. Field units  SI units
               Total measured depth:  7,000 ft
               Average inclination angle:  20 degrees
               Tubing inside diameter:  1.995 in.
               Gas production rate:   1,000,000 scfd
               Gas-specific gravity:  0.7 air ¼ 1
               Oil production rate:   1000 stb/d
               Oil-specific gravity:  0.85 H 2 O ¼ 1
               Water production rate:  300 bbl/d
               Water-specific gravity:  1.05 H 2 O ¼ 1
                                        3
               Solid production rate:  1 ft =d
               Solid specific gravity:  2.65 H 2 O ¼ 1
               Tubing head temperature:  100 8F
               Bottom-hole temperature:  224 8F
               Tubing head pressure:  300 psia
               Solution
               A ¼                    3.1243196 in: 2
               D ¼                    0.16625 ft
               T av ¼                 622 8R
               cos (u) ¼              0.9397014
               (Drv) ¼                40.908853
               f M ¼                  0.0415505
               a ¼                    0.0001713
               b ¼                    2.884E-06
               c ¼                    1349785.1
               d ¼                    3.8942921
               e ¼                    0.0041337
               M ¼                    20447.044
               N ¼                    6.669Eþ09
               Bottom-hole pressure, p wf ¼  1,682 psia

                                                                   r ffiffiffiffiffiffi
                u m ¼ mixture velocity, ft/s                        4  r L
                                                         N vG ¼ 1:938u SG                   (4:31)
                                                                     s
                and
                                                         Pipe diameter number, N D :
                                                                   r ffiffiffiffiffiffi
                 r r ¼ y L r L þ (1   y L )r G ,  (4:28)             r L
                                                         N D ¼ 120:872D                     (4:32)
               u m ¼ u SL þ u SG ,                (4:29)             s
                                                         Liquid viscosity number, N L :
               where                                                s ffiffiffiffiffiffiffiffiffiffiffi
                 r L ¼ liquid density, lb m =ft 3        N L ¼ 0:15726 m L  4  1  ,         (4:33)
                 r G ¼ in situ gas density, lb m =ft 3                r L s 3
                u SL ¼ superficial velocity of liquid phase, ft/s  where
                u SG ¼ superficial velocity of gas phase, ft/s
                                                           D ¼ conduit inner diameter, ft
                The superficial velocity of a given phase is defined as the
               volumetric flow rate of the phase divided by the pipe cross-  s ¼ liquid–gas interfacial tension, dyne/cm
               sectional area for flow. The third term in the right-hand  m L ¼ liquid viscosity, cp
               side of Eq. (4.27) represents pressure change due to kinetic  m G ¼ gas viscosity, cp
               energy change, which is in most instances negligible for oil  The first chart is used for determining parameter (CN L )
               wells.                                    based on N L . We have found that this chart can be re-
                Obviously, determination of the value of liquid holdup  placed by the following correlation with acceptable ac-
               y L is essential for pressure calculations. The mH-B cor-  curacy:
               relation uses liquid holdup from three charts using the
                                                                 Y
               following dimensionless numbers:          (CN L ) ¼ 10 ,                     (4:34)
               Liquid velocity number, N vL :            where
                          r ffiffiffiffiffiffi
                          4  r L
               N vL ¼ 1:938 u SL                  (4:30)                            2
                            s                            Y ¼ 2:69851 þ 0:15841X 1   0:55100X 1
                                                                    3
               Gas velocity number, N vG :                  þ 0:54785X   0:12195X 1 4       (4:35)
                                                                    1
   56   57   58   59   60   61   62   63   64   65   66