Page 71 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 71

Guo, Boyun / Petroleum Production Engineering, A Computer-Assisted Approach  0750682701_chap05 Final Proof page 62 21.12.2006 2:02pm




               5/62  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
               5.4.2 Sonic Flow                          Solution (a)
               Under sonic flow conditions, the gas passage rate reaches             k       1:3
                                                             P outlet  2  k 1    2   1:3 1
               its maximum value. The gas passage rate is expressed in  ¼   ¼          ¼ 0:5459
               the following equation for ideal gases:        P up  c  k þ 1   1:3 þ 1
                           v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           u      !
                           u   k     2   kþ1                 P dn  200
                                         k 1
                           t                                   ¼    ¼ 0:25 < 0:5459 Sonic flow exists:
               Q sc ¼ 879C D Ap up                 (5:8)     P up  800
                              g g T up  k þ 1
                                                                        d 2  1 00
               The choke flow coefficient C D is not sensitive to the Rey-  ¼  ¼ 0:5
               nolds number for Reynolds number values greater than     d 1  2 00
                6
                                                   6
               10 . Thus, the C D value at the Reynolds number of 10 can  Assuming N Re > 10 , Fig. 5.2 gives C D ¼ 0:62.
                                                                      6
               be assumed for C D values at higher Reynolds numbers.  v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                Gas velocity under sonic flow conditions is equal to  u  k  !    2   kþ1
                                                                    u
                                                                                k 1
               sound velocity in the gas under the in situ conditions:  q sc ¼ 879C D AP up t
                  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  g g T up  k þ 1





                                  z up  2                                  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                              1:3þ1
               n ¼  n 2 up  þ 2g c C p T up 1    z outlet k þ 1  (5:9)  q sc ¼ (879)(0:62)[p(1) =4](800)  1:3  2  1:3 1
                                                                      2
                                                                              (0:6)(75 þ 460)  1:3 þ 1
               or                                        q sc ¼ 12,743 Mscf=d
                     p ffiffiffiffiffiffiffi
               n   44:76 T up                     (5:10)
                                                         Check N Re :
                                                          m ¼ 0:01245 cp by the Carr–Kobayashi–Burrows cor-
               5.4.3 Temperature at Choke                relation.
               Depending on the upstream-to-downstream pressure ratio,
               the temperature at choke can be much lower than expected.  N Re ¼  20q sc g g  ¼  (20)(12,743)(0:6)  ¼ 1:23   10 > 10 6
                                                                                          7
               This low temperature is due to the Joule–Thomson cooling  md 2  (0:01245)(1)
               effect, that is, a sudden gas expansion below the nozzle  (b)
               causes a significant temperature drop. The temperature
               can easily drop to below ice point, resulting in ice-plugging  z up    P outlet  k 1 k  1:3 1
               if water exists. Even though the temperature still can be  T dn ¼ T up  ¼ (75 þ 460)(1)(0:5459) 1:3
                                                                 z outlet  P up
               above ice point, hydrates can form and cause plugging



               problems. Assuming an isentropic process for an ideal gas  ¼ 465 R ¼ 5 F < 32 F
               flowing through chokes, the temperature at the choke  Therefore, heating is needed to prevent icing.
               downstream can be predicted using the following equation:
                               k 1                       (c)
                                k
                       z up  p outlet
               T dn ¼ T up                        (5:11)
                                                                     P outlet
                      z outlet  p up                        P outlet ¼ P up  ¼ (800)(0:5459) ¼ 437 psia
                                                                      P up
               The outlet pressure is equal to the downstream pressure in
               subsonic flow conditions.
                                                         Example Problem 5.2 A 0.65 specific gravity natural gas
               5.4.4 Applications                        flows from a 2-in. pipe through a 1.5-in. nozzle-type
               Equations (5.5) through (5.11) can be used for estimating  choke. The upstream pressure and temperature are
                                                         100 psia  and  70 8F,  respectively.  The  downstream
                                                         pressure is 80 psia (measured 2 ft from the nozzle). The
               . Downstream temperature
               . Gas passage rate at given upstream and downstream  gas-specific heat ratio is 1.25. (a) What is the expected
                pressures                                daily flow rate? (b) Is icing a potential problem? (c) What
               . Upstream pressure at given downstream pressure and  is the expected pressure at the nozzle outlet?
                gas passage
               . Downstream pressure at given upstream pressure and  Solution (a)
                gas passage                                                k          1:25
                                                             P outlet  2  k 1    2   1:25 1
               To estimate the gas passage rate at given upstream and  ¼   ¼           ¼ 0:5549
               downstream pressures, the following procedure can be  P up  c  k þ 1  1:25 þ 1
               taken:
                                                            P dn  ¼  80  ¼ 0:8 > 0:5549 Subsonic flow exists:
               Step 1: Calculate the critical pressure ratio with Eq. (5.1).  100
                                                            P up
               Step 2:  Calculate the downstream-to-upstream pressure
                     ratio.                                            d 2  1:5 00
               Step 3:  If the downstream-to-upstream pressure ratio is  ¼  00  ¼ 0:75
                                                                       d 1  2
                     greater than the critical pressure ratio, use Eq.
                     (5.5) to calculate gas passage. Otherwise, use Eq.  Assuming N Re > 10 , Fig. 5.1 gives C D ¼ 1:2.
                                                                      6
                     (5.8) to calculate gas passage.
                                                                        v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                                #
                                                                                   "
                                                                        u
               Example Problem 5.1 A0.6 specific gravitygas flowsfrom   u     k       P dn  2   P dn   kþ1
                                                                                        k
                                                                                               k
                                                                        t
               a 2-in. pipe through a 1-in. orifice-type choke. The upstream  q sc ¼ 1,248C D AP up
                                                                          (k   1)g g T up  P up  P up
               pressure and temperature are 800 psia and 75 8F,
               respectively. The downstream pressure is 200 psia  q sc ¼ (1,248)(1:2)[p(1:5) =4](100)
                                                                         2
               (measured 2 ft from the orifice). The gas-specific heat ratio  v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #
                                                                               "
                                                               u
               is 1.3. (a) What is the expected daily flow rate? (b) Does  u  1:25     80    2     80   1:25þ1
                                                                                            1:25
                                                                                    1:25
                                                               t
               heating need to be applied to ensure that the frost does not     (1:25   1)(0:65)(530)  100     100
               clog the orifice? (c) What is the expected pressure at the
               orifice outlet?                             q sc ¼ 5,572 Mscf=d
   66   67   68   69   70   71   72   73   74   75   76