Page 89 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 89

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap06 Final Proof page 81 3.1.2007 8:40pm Compositor Name: SJoearun




                                                                                    WELL DELIVERABILITY  6/81
                                                                                   4
                                                                                            2
                                                                                             2
                                                                                             z
                                                                           6:67   10 (e   1)f Mi q   z T  2
                                                                                     S i
                                                                      S i 2
                                                                 p 2  ¼ e p  þ              gi i  i  ,  (6:33)
                                                                                   5

                                             H n                  wf i  kf i      d cos (45 )
                                                                                   i
                                                                 where

                                              R n                    0:0375pg g R i cos (45 )
                                          H 3         L n        S i ¼    2  z i T  :                (6:34)
                                                                           z
                                                                 The friction factor f Mi can be found in the conventional
                                L 3     R 3                      manner for a given tubing diameter, wall roughness, and
                                             H 2
                                                                 Reynolds number. However, if one assumes fully turbulent
                                                                 flow, which is the case for most gas wells, then a simple
                                              R 2   L            empirical relation may be used for typical tubing strings
                                          H 1        2           (Katz and Lee, 1990):
                                         R
                                   L 1    1                      f Mi ¼  0:01750  for d i # 4:277 in:  (6:35)
                                                                      d 0:224
                                                                       i
                        Figure 6.6 Schematic of a multilateral well trajectory.  0:01603
                                                                 f Mi ¼  0:164  for d i > 4:277 in:  (6:36)
                       Thus, the composite IPR,                       d i

                       q ¼ fp hf n ,                       (6:31)  Guo (2001) used the following Nikuradse friction factor
                                                                 correlation for fully turbulent flow in rough pipes:
                       can be established implicitly.                2             3 2
                         It should be noted that the composite IPR model
                                                                     6
                                                                                   7
                       described here is general. If the vertical section of the top  f Mi ¼ 6  1       7
                       lateral is the production string (production through tubing  4  2« i  5       (6:37)
                                        will be the flowing wellhead pres-  1:74   2 log
                       or/and casing), then p hf n
                                                                                d i
                       sure. In this case, the relation expression (Eq. [6.31]) rep-
                       resents the WPR.                          For gas wells, Eq. (6.28) can be expressed as (Katz et al.,
                                                                 1959)
                       6.3.1 Gas well                            p 2  ¼ e p
                                                                      S i 2
                       For gas wells, Eq. (6.26) becomes          hf i  hf i
                                                                                           ! 2
                              2
                                  2
                              p
                         ¼ C i (   p   p ) ,               (6:32)                       P i     2
                                    n i
                                                                                              2
                                                                              4
                                                                                             z
                                                                                S i
                       q g i  i   wf i                                 6:67   10 (e   1)f Mi  q gi    z T  i
                                                                                              i
                                                                                        j¼1
                       where                                         þ                           ,   (6:38)
                                                                                   d 5
                        C i ¼ productivity coefficient of lateral i                 i
                         n i ¼ productivity exponent of lateral i.  where
                                                                     0:0375g g H i
                         As described in Chapter 4, Eq. (6.27), in U.S. field units  S i ¼  :        (6:39)
                       (q gi in Mscf/d), can be approximated as (Katz et al., 1959)  z   z i T i
                                                             p wfn
                                                       H n
                                                           q r  p wfn
                                                                           p wfn  L n
                                                                  R n
                                                                                      k  h  p n
                                                                                       n
                                                                                         n
                                                       H 3        q n
                                                                    Point 3
                                                                    P m3'  q +q +q 3
                                                                        1
                                                                           2
                                                         R 3
                                           p wf3  L 3
                                     k  h  p 3                  H 2
                                       3
                                     3
                                                          q 3
                                                Point 2
                                                    1
                                                P m2'  q +q 2     R 2     p wf 2  L 2
                                                         H 1
                                                                                   k 2  h 2  p 2
                                                                q 2
                                                         R 1      Point 1
                                              p wf1  L 1          P   q
                                        k 1  h 1  p 1         q 1  m1'  1
                                               Figure 6.7 Nomenclature of a multilateral well.
   84   85   86   87   88   89   90   91   92   93   94