Page 88 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 88

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap06 Final Proof page 80 3.1.2007 8:40pm Compositor Name: SJoearun




               6/80  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
                    Table 6.8 Solution Given by WellheadNodalOil-HB.xls
                    WellheadNodalOil-HB.xls
                    Description: This spreadsheet calculates operating point using Hagedorn–Brown correlation.
                    Instruction: (1) Select a unit system; (2) update parameter values in the Input data section; (3) click Solution
                    button; and (4) view result in the Solution section and charts.
                    Input data                      U.S. Field units    SI units
                    Depth (D):                      7,000 ft
                    Tubing inner diameter (d ti ):  3.5 in.
                    Oil gravity (API):              45 8API
                    Oil viscosity (m o ):           0.5 cp
                    Production gas–liquid ratio:    500 scf/bbl
                    Gas-specific gravity (g g ):    0.7 air ¼ 1
                    Choke size (S):                 32 1/64 in.
                    Flowing tubing head temperature (t hf ):  80 8F
                    Flowing temperature at tubing shoe (t wf ):  150 8F
                    Water cut:                      10%
                    Reservoir pressure (p e ):      4,000 psia
                    Bubble-point pressure (p b ):   3,800 psia
                    Productivity above bubble point (J*):  5 stb/d-psi
                    Choke flow constant (C):        10.00
                    Choke gas–liquid ratio exponent (m):  0.546
                    Choke-size exponent (n):        1.89
                    Solution                        q (stb/d)   p wf (psia)  p hf (psia)
                                                                        WPR   CPR
                                                       0        3,996           0
                                                    1,284       3,743   2,726  546
                                                    2,568       3,474   2,314  1,093
                                                    3,852       3,185   1,908  1,639
                                                    5,136       2,872   1,482  2,185
                                                    6,420       2,526   1,023  2,732
                                                    7,704       2,135    514  3,278
                                                    8,988       1,674      0  3,824

               Equations (6.26) through (6.29) contain (4n   1) equa-  p kf 1  , p kf 2  , .. . p kf n
               tions. For a given flowing pressure p hf n at the top of
               lateral n, the following (4n  1) unknowns can be solved  p hf 1  , p hf 2  , .. . p hf n 1
               from the (4n  1) equations:               Then the production rate of the multilateral well can be
                                                         determined by
                              q 1 , q 2 , .. . q n
                                                            X
                                                             n
                                                         q ¼  q i :                         (6:30)
                             p wf 1  , p wf 2  , .. . p wf n
                                                            i¼1
                  4,500
                                                        WPR
                  4,000
                                                        CPR
                  3,500
                 Wellhead Pressure (psia)  2,500
                  3,000



                  2,000
                  1,500

                  1,000
                    500

                      0
                       0     1,000   2,000   3,000   4,000  5,000   6,000   7,000  8,000   9,000
                                                 Liquid Production Rate (bbl/d)

                                     Figure 6.5 Nodal analysis for Example Problem 6.8.
   83   84   85   86   87   88   89   90   91   92   93