Page 148 - A Comprehensive Guide to Solar Energy Systems
P. 148
Chapter 7 • Concentrating Solar Thermal Power 147
References
[1] IEA (International Energy Agency): Solar thermal electricity technology roadmap, OECd/IEA, 2014,
Available from: https://www.iea.org/publications/freepublications/publication/TechnologyRoadma
pSolarThermalElectricity_2014edition.pdf.
[2] Ernst & young: Etude des retombées économiques potentielles de la filière solaire thermodynamique
française, France, 2013, Syndicat des Energies Renouvelables.
[3] deloitte. macroeconomic impact of the solar thermal electricity industry in Spain, edited by Proter-
mosolar. 2010.
[4] nREl (national Renewable Energy laboratory): Solar thermal power plants data base, , Available
from: https://www.nrel.gov/csp/solarpaces/index.cfm.
[5] PROTERmOSOlAR (Asociación Española para la Promoción de la Industria Termosolar): Data base
of CSTP plants in Spain, , Available from: http://www.protermosolar.com/proyectos-termosolares/
mapa-de-proyectos-en-espana/.
[6] ESTElA: The value of thermal storage. The challenge of integrating intermittent renewable generation
into power system operation, , Technical report published by the European Solar Thermal Electricity
Association, Available from: www.estelasolar.org.
[7] CSPA (Concentrating Solar Power Alliance): The economic and reliability benefits of CSP with thermal
energy storage: literature review and research needs, , Technical report, Available from: www.estelaso-
lar.org.
[8] Romero m, Zarza E: Concentrating solar thermal power. In Goswami y, Kreith F, editors: Handbook
of energy efficiency and renewable energy, CRC Press, Taylor Francis Group, 2007 [chapter 42; ISBn:
0-8493-1730-4, 978-0-8493-1730-9].
[9] Zarza E: Parabolic trough concentrating solar power (CSP) systems. In lovegrove K, Stein W, editors:
Handbook on concentrated solar thermal technologies: principles, development and applications,
Woodhead, 2012 [chapter 7, ISBN: 978-1-84569-769-3].
[10] Zarza E: Innovative working fluids for parabolic trough collectors. In Blanco m, Ramirez l, editors:
Advances in concentrating solar thermal research and technology, Woodhead, 2016 [chapter 5; ISBn:
978-0-08-100516-3 (printed), 978-0-08-100517-0 (online)].
[11] lotker m: Barriers to commercialization of large Scale solar electricity. The LUZ experience, Albuquer-
que, 1991, Sandia National Laboratories, Technical Report SAND91-7014.
[12] Riffelmann K, Richert T, nava P, Achweitzer A: ultimate trough—a significant step towards
cost-competitive CSP, Energy Procedia 49:1831–1839, 2014.
[13] International Energy Agency (IEA). World Energy Statistics 2016, online tables Available from: www.
iea.org/statistics/.
[14] Osuna R, Olavarría R, morillo R, Sánchez m, Cantero F, Fernández-Quero V, et al: PS10, construction
of a 11 mW solar thermal tower plant in Seville, Spain. In Proceedings of the 13th International Sym-
posium on Concentrated Solar Power and Chemical Energy Technologies (SolarPACES), Seville, Spain,
June 20–23. .
[15] morin G, dersch J, Eck m, Häberle A, Platzer W: Comparison of linear Fresnel and parabolic trough
collector systems—influence of linear Fresnel collector design variations on break even cost. In Pro-
ceedings of the 15th International Symposium on Concentrated Solar Power and Chemical Energy
Technologies (SolarPACES), Berlin, Germany, September 15–18. .
[16] Zhu G, Wendelin T, Wagner mJ, Kutscher C: History, current state, and future of linear Fresnel concen-
trating solar collectors, Solar Energy 103:639–652, 2014.
[17] Ho C, Christian J, Gill d, moya A, Jeter S, Abdel-Khalik S, et al: Technology advancements for next
generation falling particle receivers, Energy Procedia 49:398–407, 2014.