Page 395 - A First Course In Stochastic Models
P. 395

390             ALGORITHMIC ANALYSIS OF QUEUEING MODELS

                                 Table 9.6.1  Exact and approximate results
                                                       2
                                         2
                                                                     2
                                         c = 0        c = 0.5       c = 2
                                         S             S             S
                                      P delay  L q  P delay  L q  P delay  L q
                       c = 2  exac    0.3233 0.177  0.3308 0.256  0.3363 0.487
                       ρ = 0.5 app    0.3333 0.194  0.3333 0.260  0.3333 0.479
                              app2     —    0.176    —    0.255    —    0.491
                       c = 5  exa     0.1213 0.077  0.1279 0.104  0.1335 0.181
                       ρ = 0.5 app    0.1304 0.087  0.1304 0.107  0.1304 0.176
                              app2     —    0.076    —    0.103    —    0.185
                       c = 10  exa    0.0331 0.024  0.0352 0.030  0.0373 0.048
                       ρ = 0.5 app    0.0361 0.025  0.0361 0.030  0.0361 0.047
                              app2     —    0.023    —    0.030    —    0.049
                       c = 2  exa     0.7019 1.445  0.7087 2.148  0.7141 4.231
                       ρ = 0.8 app    0.7111 1.517  0.7111 2.169  0.7111 4.196
                              app2     —    1.442    —    2.143    —    4.247
                       c = 5  exa     0.5336 1.156  0.5484 1.693  0.5611 3.250
                       ρ = 0.8 app    0.5541 1.256  0.5541 1.723  0.5541 3.191
                              app2     —    1.155    —    1.686    —    3.277
                       c = 25  exact  0.1900 0.477  0.2033 0.661  0.2164 1.173
                       ρ = 0.8 approx  0.2091 0.495  0.2091 0.663  0.2091 1.178
                              approx2  —    0.477    —    0.657    —    1.196
                       c = 50  exa    0.0776 0.214  0.0840 0.282  0.0908 0.471
                       ρ = 0.8 app    0.0870 0.207  0.0870 0.277  0.0870 0.488
                              app2     —    0.211    —    0.279    —    0.485

                This two-moment approximation can be found in Cosmetatos (1976) and Page
                (1972). The useful special-purpose approximation

                                                      √
                                    1                   4 + 5c − 2
                           app
                         L q (det) =   1 + (1 − ρ)(c − 1)          L q (exp)
                                    2                     16cρ
                to L q (det) was proposed in Cosmetatos (1976). The results in Table 9.6.1 for the
                approximation (9.6.24) use this approximation to L q (det).

                Asymptotic expansions
                It is assumed that the probability distribution function B c (t) = B(ct) satisfies
                Assumption 9.2.1. In other words, the service-time distribution is not heavy-tailed.
                               ∞ st

                Let B = sup[s |  e {1 − B(ct)} dt < ∞]. Then, using (9.6.22) and Theorem
                               0
                C.1 in Appendix C, it is a routine matter to verify that
                                      app       −j
                                     p   ∼ σ app τ  as j → ∞,               (9.6.25)
                                      j
   390   391   392   393   394   395   396   397   398   399   400