Page 189 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 189

186   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                           By substituting (11.28)into(11.27), one obtains

                                                2
                                                                     ι
                                                         ι
                                     ˙ V 1  ≤−c 1e + e 1e 2 −  1e 1 tanh(  0.2785ˆ 1 e 1  ).  (11.29)
                                                1                  ω
                           Step i (2 ≤ i ≤ n − 1): To solve the well-known “explosion of complex-
                        ity” problem in the traditional backstepping design, we let α i−1 go through
                        aTDgiven by
                                   ⎧
                                   ⎨ ˙    = ϑ i,2
                                     ϑ i,1
                                                                ϑ i,2 | ϑ i,2 |    (11.30)
                                   ⎩ ˙    =−r 2sgn(ϑ i,1 − α i−1 +      ).
                                     ϑ i,2
                                                                  2r 2
                           Then, the i-th error surface is defined to be

                                                   e i = ξ i − α i−1 .             (11.31)

                        Differentiating e i along (11.15)yields

                                                                                   (11.32)
                                           ˙ e i = ξ i+1 −¨α i−1 ≤ ξ i+1 − ϑ i,2 + ι i
                        where ι i = ι + ι ϑ,2 represents the filter error bound of the i-th state of ESO
                        and the i-th TD, ϑ i,2 is the second state of the i-th employed TD as depicted
                        in Fig. 11.1.
                           Consider a Lyapunov function as

                                                         1 2
                                                 V i  =   e .                      (11.33)
                                                         2 i
                           From (11.31)and (11.32), it can be concluded that


                                          ˙ V i  ≤ e i (e i+1 + α i − ϑ i,2 + ι i ).  (11.34)
                           Then, the virtual control signal α i is designed as

                                                                      ι
                                                            ι
                                    α i  =−e i−1 − c ie i + ϑ i,2 −  i tanh(  0.2785ˆ i e i  )
                                                                     ω             (11.35)
                                                        ι
                                     ˙              0.2785ˆ i e i
                                                              ι
                                     ˆ ι i  = θ i [e i tanh(  ) − σ i ˆ i ],
                                                      ω
                        where θ i ,σ i ,c i are positive constants, and ˆι i represents the estimation of the
                        filter error bound ι i.
                           Substituting (11.35)into(11.34)yields
                                                                        ι
                                                                  0.2785ˆ ie i
                                            2
                                                           ι
                                  ˙ V i  ≤−c ie + e ie i+1 + e i ι i −  ie i tanh(  ).  (11.36)
                                            i
                                                                     ω
   184   185   186   187   188   189   190   191   192   193   194