Page 190 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 190

Adaptive Dynamic Surface Output Feedback Control of Pure-Feedback Systems  187


                               Step n: Define the last error as

                                                                                      (11.37)
                                                   e n  = ξ n − α n−1
                            whose derivative is

                                      = a(¯x n ) + b(¯x n )v −¨α n−1 ≤ F(¯x n ) + b 0v − ϑ n,2 + ι n .  (11.38)
                                   ˙ e n
                            Then, let α n−1 go throughaTD givenby
                                      ⎧
                                      ⎨ ˙    = ϑ n,2
                                        ϑ n,1
                                                                   ϑ n,2 | ϑ n,2 |    (11.39)
                                      ⎩ ˙    =−r nsgn(ϑ n,1 − α n−1 +       ).
                                        ϑ n,2
                                                                       2r n
                               The Lyapunov function in the n-th step is set as
                                                             e 2 n
                                                     V n  =                           (11.40)
                                                              2
                               From (11.39)and (11.37), the derivative ˙ V n can be calculated as

                                     ˙ V n = e n (F + b 0v −¨α n−1 ) ≤ e n (F − ϑ n,2 + ι n ) + e nb 0v  (11.41)

                               Finally, the actual control signal is chosen to be

                                                                             ι
                                  v  =   1  (−e n−1 − c ne n − ξ n+1 + ϑ n,2 −  n tanh(  0.2785ˆ n e n ))  (11.42)
                                                                   ι
                                        b 0                                ω
                                                                 ι
                                              ˙              0.2785ˆ n e n
                                                                         ι
                                              ˆ ι n  = θ n [e n tanh(  ) − σ n ˆ n ]  (11.43)
                                                                ω
                            where θ n, σ n ,c n are positive constants.
                               Substituting (11.42)into(11.41)results in
                                                                  ι
                                              2
                                       ≤−c ne + ι ne n −  ne n tanh(  0.2785ˆ n e n  ) + e n (F − ξ n+1 )  (11.44)
                                                      ι
                                   ˙ V n
                                              n                  ω
                            11.4.3 Stability Analysis
                            This section will prove the stability and tracking performance of the pro-
                            posed control system. It is proved that all signals of the overall closed-loop
                            system are uniformly ultimately bounded (UUB) and the tracking errors
                            converge to an arbitrarily small residue set.
                            Theorem 11.1. Consider the closed-loop system consisting of the plant (11.1),
                            unknown dead-zone non-linearities (11.2), the non-linear ESO (11.15), the TDs
                            (11.24), (11.30), (11.39), the virtual control (11.28), (11.35), and the actual
                            control (11.42). Then,
   185   186   187   188   189   190   191   192   193   194   195