Page 191 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 191

188   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        1) All signals in the closed-loop system are UUB for any given initial conditions
                            x i (0),ξ j (0),ˆι i (0),i = 1,··· ,n, j = 1,··· ,n + 1.
                        2) The tracking errors e i ,i = 1,··· ,n, converge to a compact set around zero
                            defined by (11.53).

                        Proof. Defined the following Lyapunov function as

                                                                n
                                                 n                ˜ι i (t) 2

                                       V(t) =      V i (t) + V e (t) +             (11.45)
                                                i=1             i=1 2θ i
                                                             T
                                      T
                        where V e (t) = η Pη,for η =[η 1 ,...,η n+1 ] .
                           From (11.29), (11.36), and (11.44), the derivative of V satisfies
                                    n                   n                  ι
                                       2
                          ˙ V  ≤−    c ie + e n (F − ξ n+1 ) +     ι i (e i − e i tanh(  0.2785ˆ ie i  )) + ˙ V e
                                       i
                                   i=1                 i=1              ω
                                    n       n
                                                           ι
                                                     0.2785ˆ ie i
                                        ι
                                       ι
                                 −   σ i ˜ i ˆ i +  ˆ ι ie i tanh(  )
                                   i=1      i=1         ω                          (11.46)
                                    n                   n                  ι
                                       2                             0.2785ˆ ie i
                              ≤−     c ie + e n (F − ξ n+1 ) +  ι i (e i − e i tanh(  ))
                                       i
                                   i=1                 i=1              ω
                                                     n       n              ι
                                    T  T                              0.2785ˆ ie i
                                                         ι
                                                        ι
                                 +η (A P + PA o )η −  σ i ˜ i ˆ i +  ˆ ι ie i tanh(  )
                                       o
                                                    i=1     i=1          ω
                           Then, by using the fact that
                                                      ι
                                                0.2785ˆ ie i
                                     |e i |− e i tanh(  ) ≤ 0.2785ω
                                                   ω              2    2           (11.47)
                                                                σ i ˜ ι i  σ i ι i
                                                    −σ i ˜ι i ˆι i  ≤−  +  .
                                                                 2    2
                        The inequality (11.46) can be rewritten as
                                    n                       n   2   n  2
                                            T
                                       2
                                               T
                          ˙ V  ≤−    c ie + η (A P + PA o )η −    σ i ˜ι 2 i  +    σ i ι 2  i  + 0.2785ωnι
                                               o
                                       i
                                   i=1                     i=1     i=1
                                    n
                                            e n 2  α e ι
                                      ι
                                 +   |ˆ ie i |+  +                                 (11.48)
                                           2α e  2
                                   i=1
                                   n−1
                                        2          2
                                                1        1
                              ≤−      c ie − (c n −  )e −   V e + ς
                                        i          n   λ max (P)
                                   i=1          2α e
                                   n                  n
                                     σ i ι                   α e ι
                                      2
                                                        ι
                        where ς =       + 0.2785ωnι +  |ˆ ie i |+  .
                                     2                        2
                                  i=1                i=1
                           Letting
                                                           1    1   1
                                                                   , θ i σ i }
                                     ρ v  = min 1≤i≤n  {c i ,c n −  ,  λ max (P) 2  (11.49)
                                                          2α e
   186   187   188   189   190   191   192   193   194   195   196