Page 202 - Adsorbents fundamentals and applications
P. 202

REFERENCES   187

              A note needs to be made about the interactions with zeolites that have diva-
            lent (and higher valent) cations. The interaction energies of CO 2 with X zeo-
            lites that have different univalent cations follow the order that larger ions give
            lower heats of adsorption (Table 7.4 above, and Barrer, 1978). For divalent
            ions, the heats follow the reverse order of Ba 2+  > Sr 2+  > Ca 2+  (Barrer, 1978).
            This is also the case for N 2 adsorption on zeolites with different univalent
            and divalent cations (Mckee, 1964). Both N 2 and CO 2 are nonpolar but highly
            quadrupolar. For adsorption on zeolites exchanged with univalent cations, the
                term dominates. With divalent cations, however, the large polarizabili-
            φ ˙ FQ
            ties (Table 2.2) become important, and the dispersion and induction energies
            are significantly large, especially for Ba . Hence all interaction terms need to
                                              2+
            be considered.

            REFERENCES
            Ackley, M. A. and Yang, R. T. (1991) AIChE J. 37, 1645.
            Akporiaye, D. E., Dahl, I. M., Mostad, H. B., and Wendelbo, R. (1996) Zeolites 17, 517.
            Alberti, A. (1975) Tschermaks Min. Petr. Mitt. 22, 25.
            Anthony, R. G., Dosch, R. G., Gu, D., and Philip, C. V. (1994) Ind. Eng. Chem. Res. 33,
              2702.
            Argauer, R. J. and Landolt, G. R. U.S. Patent 3,702,886 (1972).
            Barrer, R. M. (1978) Zeolites and Clay Minerals. Academic Press, New York, NY.
            Barrer, R. M. and Denny, P. J. (1961) J. Chem. Soc. 971.
            Barrer, R. M. and Gibbons, R. M. (1965) Trans. Faraday Soc. 61, 948.
            Barrer, R. M. and Stuart, W. I. (1959) Proc. Roy. Soc. A249, 464.
            Breck, D. W. (1974) Zeolite Molecular Sieves. Wiley, New York, NY.
            Breck, D. W. and Flanigen, E. M. (1968) Molecular Sieves. Soc. Chem. Ind., London,
              U.K. p. 47.
            Calligaris, M. and Nordin, G. (1982) Zeolites, 2, 200.
            Chao, C. C. U.S. Patent 4,859,217 (1989).
            Chao, C., Sherman, I. D., Mullhaupt, T. J., and Bollinger, C.-M. U.S. Patent 5,174,979
              (1992).
            Charnell, J. F. (1971) J. Cryst. Growth 8, 291.
            Chen, N. and Yang, R. T. (1996) Ind. Eng. Chem. Res. 35, 4020.
            Chen, N. Y., Degnan, T. F., Jr., and Smith, C. M. (1994) Molecular Transport and Reac-
              tion in Zeolites.VCH, New York,N.Y.
            Clark, L. A. and Snurr, R. Q. (1999) Chem. Phys. Lett. 308, 155.
            Coe, C. G. (1995) Access in Nanoporous Material. (T. I. Pinnavaia and M. E. Thorpe,
              eds.). Plenum Press, New York, N.Y., p. 213.
            Coker, E. N. and Jansen, J. C. (1998) Approaches for the synthesis of ultra-large and
              ultra-small zeolite crystals. In Molecular Sieves. (H. G. Karge and J. Weitkamp, eds.).
              Springer, Berlin Germany and New York, N.Y. pp. 121–155.
            Davis, M. E., Saldarriaga, C. H., Montes, C., Garces, J. M., and Crowder, C. (1988a)
              Nature 331, 698.
   197   198   199   200   201   202   203   204   205   206   207