Page 214 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 214

194               When the borane is chiral, these reactions can be enantioselective. The most highly
                       developed of the chiral boranes are derived from  -pinene. The dialkylborane is
     CHAPTER 2         known as diisopinocampheylborane, Ipc BH. Both enantiomers are available. 143  The
                                                        2
     Stereochemistry,  corresponding B-alkyl and chloroborane derivatives act as enantioselective reduc-
     Conformation,
     and Stereoselectivity  tants toward ketones. For example the BBN derivative of isopinocampheylborane is
                       enantioselective in the reduction of acetophenone. 144  The degree of enantioselectivity
                       of alkylchloroboranes depends on the alkyl substituent, increasing from methyl (14%
                       e.e. S), ethyl (33% e.e. S) through isopropyl (81% e.e. S), but then completely reversing
                       with the t-butyl derivative (96% e.e. R). 145  Di-(isopinocampheyl)chloroborane, 146
                        Ipc  BCl, and t-butylisopinocampheylchloroborane 147  achieve high enantioselectivity
                           2
                       for aryl and hindered dialkyl ketones. Diiso-2-ethylapopinocampheylchloroborane,
                        Eap  BCl, shows good enantioselectivity toward an even wider range of ketones. 148
                            2
                                                         R
                                                              BCl
                                                             ) 2
                                                (
                                                            H
                                                CH 3
                                                    CH 3   CH 3
                                                        BCl  R = H
                                                    (Ipc) 2
                                                        BCl  R = C H
                                                    (Eap) 2      2 5
                       In most cases, the enantioselectivity can be predicted by a model that places the smaller
                       carbonyl substituent toward the isopinocampheyl methyl group. 149



                                                            B
                                                               O
                                                CH 3        H     R L
                                                    CH 3  CH 3  R S



                           The origin of the enantioselectivity has been examined using semiempirical (AM1)
                       computations. 145c  The main differences in stability arise at the stage of formation of
                                                                          2
                                                                                3
                       the borane-ketone complex, where the boron changes from sp to sp hybridization.
                       The boron substituents introduce additional steric compressions. Table 2.6 gives some
                       typical results for enantioselective reduction of ketones.
                           An even more efficient approach to enantioselective reduction of ketones is to
                       use a chiral catalyst. One of the most successful is the oxazaborolidine D, which is

                       143	  H. C. Brown, P. K. Jadhav, and A. K. Mandal, Tetrahedron, 37, 3547 (1981); H. C. Brown and P. K.
                          Jadhav, in Asymmetric Synthesis, J. D. Morrison, ed., Academic Press, New York, 1983, Chap. 1.
                       144
                          M. M. Midland, S. Greer, A. Tramontano, and S. A. Zderic, J. Am. Chem. Soc., 101, 2352 (1979).
                       145	  (a) M. M. Rogic, J. Org. Chem., 61, 1341 (1996); (b) M. M. Rogic, P. V. Ramachandran, H. Zinnen, L.
                          D. Brown, and M. Zheng, Tetrahedron: Asymmetry, 8, 1287 (1997); (c) M. M. Rogic, J. Org. Chem.,
                          65, 6868 (2000).
                       146	  H. C. Brown, J. Chandrasekharan, and P. V. Ramachandran, J. Am. Chem. Soc., 110, 1539 (1988); M.
                          Zhao, A. O. King, R. D. Larsen, T. R. Verhoeven, and P. J. Reider, Tetrahedron Lett., 38, 2641 (1997).
                       147
                          H. C. Brown, M. Srebnik, and P. V. Ramachandran, J. Org. Chem., 54, 1577 (1989).
                       148	  H. C. Brown, P. V. Ramachandran, A. V. Teodorovic, and S. Swaminathan, Tetrahedron Lett., 32, 6691
                          (1991).
                       149
                          M. M. Midland and J. L. McLoughlin, J. Org. Chem., 49, 1316 (1984).
   209   210   211   212   213   214   215   216   217   218   219