Page 503 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 503

484                        Table 5.1. Rates of Alkene Hydration in Aqueous Sulfuric Acid a
                                                               s
                                     Alkene               k 2  M  −1 −1
     CHAPTER 5                                                                 k rel
     Polar Addition             CH 2 =CH 2               1 56×10 −15         1
     and Elimination                                     2 38×10 −8          1 6×10 7
                                CH 3 CH=CH 2
     Reactions                                                  −8                7
                                CH 3  CH 2   3 CH=CH 2   4 32×10             3 0×10
                                                         2 14×10 −3          1 5×10 12
                                 CH 3   2 C=CHCH 3
                                                         3 71×10 −3          2 5×10  12
                                 CH 3   2 C=CH 2
                                                         2 4×10 −6           1 6×10 9
                                PhCH=CH 2
                                a. W. K. Chwang, V. J. Nowlan, and T. T. Tidwell, J. Am. Chem. Soc., 99, 7233 (1977).
                       to alkenes to give ethers, and the mechanistic studies that have been done indicate
                       that the reaction closely parallels the hydration process. 28  The strongest acid
                       catalysts probably react via discrete carbocation intermediates, whereas weaker
                       acids may involve reaction of the solvent with an alkene-acid complex. In the
                       addition of acetic acid to Z-or E-2-butene, the use of DBr as the catalyst
                       results in stereospecific anti addition, whereas the stronger acid CF SO H leads
                                                                                     3
                                                                                  3
                       to loss of stereospecificity. This difference in stereochemistry can be explained by
                       a stereospecific Ad 3 mechanism in the case of DBr and an Ad 2 mechanism
                                        E                                       E
                       in the case of CF SO D. 29  The dependence of stereochemistry on acid strength
                                       3  3
                       reflects the degree to which nucleophilic participation is required to complete proton
                       transfer.
                                                             D–Br
                                                   D–Br
                                  E – CH CH  CHCH 3     CH CH  CHCH 3
                                                          3
                                       3
                                          D–Br
                                                              H  D
                                                         CH 3
                                  E – CH3CH  CHCH3                 CH 3
                                                         CH CO 2  H
                                                           3
                                  CH CO H
                                       2
                                    3
                                  nucleophilic participation required: anti addition
                                                                            D
                                  E – CH CH  CHCH 3  +  CF SO D        CH CHCHCH 3
                                                                         3
                                                        3
                                                           3
                                       3
                                                                          +
                                       D                                 D
                                  CH CHCHCH    +   CH CO H          CH CHCHCH
                                    3
                                     +      3        3  2             3       3
                                                                       O 2 CCH 3
                                  nucleophilic participation not required: nonstereospecific addition
                           Trifluoroacetic acid adds to alkenes without the necessity of a stronger acid
                       catalyst. 30  The mechanistic features of this reaction are similar to addition of water
                       catalyzed by strong acids. For example, there is a substantial isotope effect when
                       CF CO D is used (k /k = 4 33) 31  and the reaction rates of substituted styrenes are
                          3
                                           D
                             2
                                        H
                        28   N. C. Deno, F. A. Kish, and H. J. Peterson, J. Am. Chem. Soc., 87, 2157 (1965).
                        29
                          D. J. Pasto and J. F. Gadberry, J. Am. Chem. Soc., 100, 1469 (1978).
                        30   P. E. Peterson and G. Allen, J. Am. Chem. Soc., 85, 3608 (1963); A. D. Allen and T. T. Tidwell, J. Am.
                          Chem. Soc., 104, 3145 (1982).
                        31
                          J. J. Dannenberg, B. J. Goldberg, J. K. Barton, K. Dill, D. M. Weinwurzel, and M. O. Longas, J. Am.
                          Chem. Soc., 103, 7764 (1981).
   498   499   500   501   502   503   504   505   506   507   508