Page 577 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 577

558                 Table 5.13. Orientation of Elimination from 2-Butyl Systems under E2 Conditions

     CHAPTER 5         Leaving group         Base/solvent        1-Butene (%)       2-Butene (%)
     Polar Addition     I a                PhCO 2 /DMSO              7                 93
                                               −
     and Elimination    I a                C 2 H 5 O /DMSO          17                 83
                                               −
     Reactions
                        I b                t-C 4 H 9 O /DMSO        21                 79
                                                −
                        Br b               t-C 4 H 9 O /DMSO        33                 67
                                                −
                        Cl b               t-C 4 H 9 O /DMSO        43                 57
                                                −
                                               −
                        Br c               C 2 H 5 O /DMSO          19                 81
                               d               −
                        OSO 2 C 7 H 7      C 2 H 5 O /DMSO          35                 65
                               d                −
                        OSO 2 C 7 H 7      t-C 4 H 9 O /DMSO        61                 39
                                               −
                         +    e            C 2 H 5 O /DMSO          74                 26
                        S  CH 3   2
                         +     f           OH −                     95                  5
                        N  CH 3   3
                       a. R. A. Bartsch, B. M. Pruss, B. A. Bushaw, and K. E. Wiegers, J. Am. Chem. Soc., 95, 3405 (1973).
                       b. D. L. Griffith, D. L. Meges, and H. C. Brown, J. Chem. Soc. Chem. Commun., 90 (1968).
                       c. M. L. Dahr, E. D. Hughes, and C. K. Ingold, J. Chem. Soc., 2058 (1948).
                       d. D. H. Froemsdorf and M. D. Robbins, J. Am. Chem. Soc., 89, 1737 (1967).
                       e. E. D. Hughes, C. K. Ingold, G. A. Maw, and L. I. Woolf, J. Chem. Soc., 2077 (1948).
                       f. A. C. Cope, N. A. LeBel, H.-H. Lee, and W. R. Moore, J. Am. Chem. Soc., 79, 4720 (1957).
                           Branched amide bases can also control the regiochemistry of elimination on
                       the basis of steric effects. For example LiTMP favors formation of 1-butene from
                       2-bromobutane.
                                           LiTMP, THF
                               CH CHCH                 CH   CHCH CH    +   CH CH  CHCH
                            CH 3  2    3                 2      2  3         3         3
                                           12-crown-4                86:14
                                  Br
                                                                                      Ref. 284
                           The leaving group also affects the amount of internal versus terminal alkene that
                       is formed. The poorer the leaving group, the more E1cb-like the TS. This trend is
                       illustrated for the case of the 2-butyl system by the data in Table 5.13. Positively
                       charged leaving groups, such as in dimethylsulfonium and trimethylammonium salts,
                       may also favor a more E1cb-like TS because their inductive and field effects increase
                       the acidity of the ß-protons.

                       5.10.3. Stereochemistry of E2 Elimination Reactions

                           In this section we focus primarily on the stereochemistry of the concerted E2
                       mechanism. The most familiar examples are dehydrohalogenation and dehydrosul-
                       fonylation reactions effected by strong bases. In principle, elimination can proceed
                       with either syn or anti stereochemistry. For acyclic systems, there is a preference
                       for anti elimination, but this can be overridden if conformational factors favor a syn
                       elimination. The anti TS maximizes orbital overlap and avoids the eclipsing that is
                       present in the syn TS.

                                B: –                                  B: –
                                   H       X                            H
                                     C  C              C  C                C  C
                                                                                 X
                                  syn-elimination                        anti elimination

                       284
                          I. E. Kopka, M. A. Nowak, and M. W. Rathke, Synth. Commun., 16, 27 (1986).
   572   573   574   575   576   577   578   579   580   581   582