Page 1069 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1069

One aspect of the copper catalytic system that has received attention is the  1045
              identity of the active catalytic species. In the case of displacement of aryl bromides by
              methoxide ion in the presence of CuBr, it has been suggested that the active species  SECTION 11.3
              is Cu(I)(OCH   , an anionic cuprate. 153                                         Transition
                         3 2
                                                                                           Metal–Catalyzed
                                                                                        Aromatic Substitution
                                     I
              CuBr  + 2 NaOCH 3   [Cu (OCH ) ] –                                               Reactions
                                         3 2
                                          Br
                                                                          I
                                            III
                                                                                3
                  I
               [Cu (OCH ) ] –  +  ArBr  [Ar  Cu (OCH ) ] –    ArOCH 3 +  [Cu Br(OCH )] –
                                                 3 2
                      3 2
                                oxidative            reductive
                                addition             elimination
              11.3.2. Palladium-Catalyzed Reactions
                  In Section 8.2.3.2, we discussed arylation of enolates and enolate equivalents using
              palladium catalysts. Related palladium-phosphine combinations are very effective
              catalysts for aromatic nucleophilic substitution reactions. For example, conversion of
              aryl iodides to nitriles can be done under mild conditions with Pd(PPh   as a catalyst.
                                                                      3 4
                                                  ) ,
                                            Pd(PPh 3 4
                                            (C H ) N  CH O        CN
                             CH O        I    2 5 3    3
                               3
                                               ) SiCN
                                           (CH 3 3               89%
                                              80 °C
                                                                              Ref. 154
                  A great deal of effort has been devoted to finding efficient catalysts for substitution
              by oxygen and nitrogen nucleophiles. 155  These studies have led to optimization of the
              catalysis with ligands such as triarylphosphines, 156  bis-phosphines such as BINAP, 157
              dppf, 158  and phosphines with additional chelating substituents. 159  Among the most
              effective catalysts are highly hindered trialkyl phosphines such as tri-t-butyl and
              tricyclohexylphosphine. 160  A series of 2-biphenylphosphines 3–6 has also been found
              to have excellent activity. 161

              153   H. L. Aalten, C. van Koten, D. M. Grove, T. Kuilman, O. G. Piekstra, L. A. Hulshof, and R. A. Sheldon,
                 Tetrahedron, 45, 5565 (1989).
              154   N. Chatani and T. Hanafusa, J. Org. Chem., 51, 4714 (1986).
              155
                 S. L. Buchwald, A. S. Guram, and R. A. Rennels, Angew. Chem. Intl. Ed. Engl., 34, 1348 (1995);
                 J. F. Hartwig, Synlett, 329 (1997); J. F. Hartwig, Angew. Chem. Intl. Ed. Engl., 37, 2047 (1998);
                 J. P. Wolfe, S. Wagaw, J. F. Marcoux, and S. L. Buchwald, Acc. Chem. Res., 31, 805 (1998);
                 J. F. Hartwig, Acc. Chem. Res., 31, 852 (1998); B. H. Yang and S. L. Buchwald, J. Organomet. Chem.,
                 576, 125 (1999).
              156   J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 61, 1133 (1996); J. Louie and J. F. Hartwig, Tetrahedron
                 Lett., 36, 3609 (1995).
              157   J. P. Wolfe, S. Wagaw, and S. L. Buchwald, J. Am. Chem. Soc., 118, 7215 (1996).
              158
                 M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc., 118, 7217 (1996).
              159   D. W. Old, J. P. Wolfe, and S. L. Buchwald, J. Am. Chem. Soc., 120, 9722 (1998); B. C. Hamann
                 and J. F. Hartwig, J. Am. Chem. Soc., 120, 7369 (1998); S. Vyskocil, M. Smrcina, and P. Kocovsky,
                 Tetrahedron Lett., 39, 9289 (1998).
              160   M. Nishiyama, T. Yamamoto, and Y. Koie, Tetrahedron Lett., 39, 617 (1998); N. P. Reddy and
                 M. Tanaka, Tetrahedron Lett., 38, 4807 (1997).
              161
                 M. C. Harris, X. Huang, and S. L. Buchwald, Org. Lett., 4, 2885 (2002); D. W. Old, J. P. Wolfe, and S.
                 L. Buchwald, J. Am. Chem. Soc., 120, 9722 (1998); H. Tomori, J. M. Fox, and S. L. Buchwald, J. Org.
                 Chem., 65, 5334 (2000).
   1064   1065   1066   1067   1068   1069   1070   1071   1072   1073   1074