Page 1067 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1067

CH 3                 CH 3                                     1043
                                      Br                   CN
                                                DMF
                                         + CuCN                                             SECTION 11.3
                                                 Δ
                                                              93%             Ref. 138         Transition
                                                                                           Metal–Catalyzed
                                                                                        Aromatic Substitution
                                                                                               Reactions
                                                                   CN
                                     Br           NMP
                                        + CuCN
                                                 200°C
                                                                  95%         Ref. 139
                  A general mechanistic description of the copper-promoted nucleophilic substi-
              tution involves an oxidative addition of the aryl halide to Cu(I) followed by collapse
              of the arylcopper intermediate with a ligand transfer (reductive elimination). 140

                           Ar  X  +  Cu(I)Z  Ar  Cu(III)  Z  Ar  Z  + CuX
                               X = halide      X
                               Z = nucleophile

              Several other kinds of nucleophiles can be arylated by copper-catalyzed substitution.
              Among the reactive nucleophiles are carboxylate ions, 141  alkoxide ions, 142  amines, 143
              phthalimide anions, 144  thiolate anions, 145  and acetylides. 146  In some of these reactions
              there is competitive reduction of the aryl halide to the dehalogenated arene, which is
              attributed to protonolysis of the arylcopper intermediate. Most of these reactions are
              carried out at high temperature under heterogeneous conditions using copper powder
              or copper bronze as the catalyst. The general mechanism suggests that these catalysts
              act as sources of Cu(I) ions. Homogeneous reactions can be carried out using soluble
              Cu(I) salts, particularly Cu(I)O SCF . 147  These reactions occur under milder conditions
                                       3
                                           3
              than those using other sources of copper. The range and effectiveness of coupling aryl
              halides and phenolates to give diaryl ethers is improved by use of with CsCO . 148
                                                                                3
              Reaction occurs in refluxing toluene.
                    CH 3                      CuO SCF    CH 3
                                                 3
                                               Cs CO 3  3
                                                 2
                             I  +  – O                           O         CH 3
                                               toluene
                    CH 3                        105°C    CH 3             80%
              Some reactions of this type are accelerated further by use of naphthoic acid as an
              additive. This effect is believed to result from formation of a mixed anionic cuprate

              138
                 L. Friedman and H. Shechter, J. Org. Chem., 26, 2522 (1961).
              139   M. S. Newman and H. Bode, J. Org. Chem., 26, 2525 (1961).
              140
                 T. Cohen, J. Wood, and A. G. Dietz, Tetrahedron Lett., 3555 (1974).
              141   T. Cohen and A. H. Lewin, J. Am. Chem. Soc., 88, 4521 (1966).
              142   R. G. R. Bacon and S. C. Rennison, J. Chem. Soc. C, 312 (1969).
              143
                 A. J. Paine, J. Am. Chem. Soc., 109, 1496 (1987).
              144   R. G. R. Bacon and A. Karim, J. Chem. Soc., Perkin Trans. 1, 272 (1973).
              145
                 H. Suzuki, H. Abe, and A. Osuka, Chem. Lett., 1303 (1980); R. G. R. Bacon and H. A. O. Hill, J. Chem.
                 Soc., 1108 (1964).
              146
                 C. E. Castro, R. Havlin, V. K. Honwad, A. Malte, and S. Moje, J. Am. Chem. Soc., 91, 6464 (1969).
              147   T. Cohen and J. G. Tirpak, Tetrahedron Lett., 143 (1975).
              148
                 J. F. Marcoux, S. Doye, and S. L. Buchwald, J. Am. Chem. Soc., 119, 10539 (1997).
   1062   1063   1064   1065   1066   1067   1068   1069   1070   1071   1072