Page 1122 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1122

1098             Higher concentrations of DMDO can be obtained by extraction of a 1:1 aqueous
                       dilution of the distillate by CH Cl 	 CHCl ,orCCl . 88  Another method involves in
                                                          3
                                                   2
                                                 2
                                                                  4
      CHAPTER 12                                                      89
                       situ generation of DMDO under phase transfer conditions.
      Oxidations
                                                         O
                                                      CH CCH ,      O
                                                             3
                                                        3
                                                     KOSO OOH
                                                          2
                                                                            ) OCH Ph
                                CH 3 CH  CH(CH ) OCH Ph         CH CH CH(CH 2 3  2
                                                  2
                                             2 3
                                                                  3
                                                     pH 7.8 buffer,
                                                          +
                                                               –
                                                    n-Bu N  HSO ,
                                                        4
                                                              4
                       The yields and rates of oxidation by DMDO under these in situ conditions depend on
                       pH and other reaction parameters. 90
                           Various computational models agree that the reaction occurs by a concerted
                       mechanism. 91  Comparison between epoxidation by peroxy acids and dioxiranes
                       suggests that they have similar transition structures.
                                                                   CH 3
                                                   CH 3         O
                                                O    CH             CH 3
                                                 O     3     R   O
                                             R
                                                                 R
                                                 R
                       Kinetics and isotope effects are consistent with this mechanism. 92  The reagent is
                       electrophilic in character and reaction is facilitated by ERG substituents in the alkene.
                       A B3LYP/6-31G computation found the transition structures and E values shown in
                                     ∗
                                                                              a
                       Figure 12.11.
                           Similarly to peroxycarboxylic acids, DMDO is subject to cis or syn stere-
                       oselectivity by hydroxy and other hydrogen-bonding functional groups. 93  However
                       a study of several substituted cyclohexenes in CH CN −H O suggested a domin-
                                                                  3      2
                       ance by steric effects. In particular, the hydroxy groups in cyclohex-2-enol and


                        88   M. Gilbert. M. Farrert, F. Sanchez-Baeza, and A. Messeguer, Tetrahedron, 53, 8643 (1997).
                        89
                          S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue, and R. G. Wilde, J. Org. Chem., 60, 1391 (1995).
                        90   M. Frohn, Z.-X. Wang, and Y. Shi, J. Org. Chem., 63, 6425 (1998); A. O’Connell, T. Smyth, and
                          B. K. Hodnett, J. Chem. Technol. Biotech., 72, 60 (1998).
                        91
                          R. D. Bach, M. N. Glukhovtsev, C. Gonzalez, M. Marquez, C. M. Estevez, A. G. Baboul, and H. Schlegel,
                          J. Phys. Chem., 101, 6092 (1997); K. N. Houk, J. Liu, N. C. DeMello, and K. R. Condroski, J. Am.
                          Chem. Soc., 119, 10147 (1997); C. Jenson, J. Liu, K. N. Houk, and W. L. Jorgensen, J. Am. Chem.
                          Soc., 119, 12982 (1987); R. D. Bach, M. N. Glukhovtsev, and C. Canepa, J. Am. Chem. Soc., 120,
                          775 (1998); M. Freccero, R. Gandolfi, M. Sarzi-Amade, and A. Rastelli, Tetrahedron, 54, 6123 (1998);
                          J. Liu, K. N. Houk, A. Dinoi, C. Fusco, and R. Curci, J. Org. Chem., 63, 8565 (1998); R. D. Bach,
                          O. Dmitrenko, W. Adam, and S. Schambony, J. Am. Chem. Soc., 125, 924 (2003).
                        92   W. Adam, R. Paredes, A. K. Smerz, and L. A. Veloza, Liebigs Ann. Chem., 547 (1997); A. L. Baumstark,
                          E. Michalenabaez, A. M. Navarro, and H. D. Banks, Heterocycl. Commun., 3, 393 (1997); Y. Angelis,
                          X. Zhang, and M. Orfanopoulos, Tetrahedron Lett., 37, 5991 (1996).
                        93
                          R. W. Murray, M. Singh, B. L. Williams, and H. M. Moncrief, J. Org. Chem., 61, 1830 (1996);
                          G. Asensio, C. Boix-Bernardini, C. Andreu, M. E. Gonzalez-Nunez, R. Mello, J. O. Edwards, and
                          G. B. Carpenter, J. Org. Chem., 64, 4705 (1999).
   1117   1118   1119   1120   1121   1122   1123   1124   1125   1126   1127