Page 186 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 186

13
                                               1
      158              NMR spectroscopic studies ( H	 C, and  31 P) are consistent with the dipolar ylide
                       structure and suggest only a minor contribution from the ylene structure. 234  Theoretical
      CHAPTER 2                                   235
                       calculations support this view.  The phosphonium ylides react with carbonyl
      Reactions of Carbon  compounds to give olefins and the phosphine oxide.
      Nucleophiles with
      Carbonyl Compounds
                                         +  –
                                       R P  CR 2  +  R′ C  O  R C  CR′ 2 + R 3 P  O
                                                            2
                                        3
                                                   2
                       There are related reactions involving phosphonate esters or phosphines oxides. These
                       reactions differ from the Wittig reaction in that they involve carbanions formed by
                       deprotonation. In the case of the phosphonate esters, a second EWG substituent is
                       usually present.
                                  O                    O
                                             base                 R C  O
                                                                   2
                              (R′O) PCH -EWG       (R′O) PCH-EWG         R C   CH-EWG
                                                                           2
                                                       2
                                      2
                                  2
                                                         -
                       2.4.1.1. Olefination Reactions Involving Phosphonium Ylides. The synthetic potential
                       of phosphonium ylides was developed initially by G. Wittig and his associates at
                       the University of Heidelberg. The reaction of a phosphonium ylide with an aldehyde
                       or ketone introduces a carbon-carbon double bond in place of the carbonyl bond.
                       The mechanism originally proposed involves an addition of the nucleophilic ylide
                       carbon to the carbonyl group to form a dipolar intermediate (a betaine), followed by
                       elimination of a phosphine oxide. The elimination is presumed to occur after formation
                       of a four-membered oxaphosphetane intermediate. An alternative mechanism proposes
                       direct formation of the oxaphosphetane by a cycloaddition reaction. 236  There have
                       been several computational studies that find the oxaphosphetane structure to be an
                       intermediate. 237  Oxaphosphetane intermediates have been observed by NMR studies
                       at low temperature. 238  Betaine intermediates have been observed only under special
                       conditions that retard the cyclization and elimination steps. 239

                                                (betaine intermediate)
                                                       +
                                                    Ar 3 P  CR 2
                                                       –   ′
                                                       O  CR
                                +  –                       2
                             Ar P  CR 2  + R′ 2 C  O                Ar P  O  +  R C  CR′ 2
                               3
                                                                               2
                                                                      3
                                                    Ar 3 P  CR 2
                                                       O  CR′ 2
                                               (oxaphosphetane intermediate)
                       234
                          H. Schmidbaur, W. Bucher, and D. Schentzow, Chem. Ber., 106, 1251 (1973).
                       235   A. Streitwieser, Jr., A. Rajca, R. S. McDowell, and R. Glaser, J. Am. Chem. Soc., 109, 4184 (1987);
                          S. M. Bachrach, J. Org. Chem., 57, 4367 (1992); D. G. Gilheany, Chem. Rev., 94, 1339 (1994).
                       236   E. Vedejs and K. A. J. Snoble, J. Am. Chem. Soc., 95, 5778 (1973); E. Vedejs and C. F. Marth, J. Am.
                          Chem. Soc., 112, 3905 (1990).
                       237
                          R. Holler and H. Lischka, J. Am. Chem. Soc., 102, 4632 (1980); F. Volatron and O. Eisenstein, J. Am.
                          Chem. Soc., 106, 6117 (1984); F. Mari, P. M. Lahti, and W. E. McEwen, J. Am. Chem. Soc., 114,
                          813 (1992); A. A. Restrepocossio, C. A. Gonzalez, and F. Mari, J. Phys. Chem. A, 102, 6993 (1998);
                          H. Yamataka and S. Nagase, J. Am. Chem. Soc., 120, 7530 (1998).
                       238   E. Vedejs, G. P. Meier, and K. A. J. Snoble, J. Am. Chem. Soc., 103, 2823 (1981); B. E. Maryanoff,
                          A. B. Reitz, M. S. Mutter, R. R. Inners, H. R. Almond, Jr., R. R. Whittle, and R. A. Olofson, J. Am.
                          Chem. Soc., 108, 7684 (1986).
                       239
                          R. A. Neumann and S. Berger, Eur. J. Org. Chem., 1085 (1998).
   181   182   183   184   185   186   187   188   189   190   191