Page 283 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 283

O          O    O                                      255
                             RCO 2 –  +  (PhO) PN 3  RC O P(OPh) 2  +  N 3 –                SECTION 3.4
                                         2
                             O     O                  O                                   Interconversion of
                                                                                           Carboxylic Acid
                                                           –
                            RC  O P(OPh) 2  + N 3 –  RCN   +   O P(OPh) 2                     Derivatives
                                                        3
                                                             2
                                 O                   O
                                RCN +  R′NH 2       RCNHR′  + HN 3
                                   3
              Another useful reagent for amide formation is compound 1, known as BOP-Cl, 141
              which also proceeds by formation of a mixed carboxylic phosphoric anhydride.
                                                              O
                                                                  O
                                            O           O     N
                              RCO 2 –  + O  N  P  N  O  RC  O  P  O
                                            Cl                N
                                       O        O
                                     1                            O
                                                              O
                  Another method for converting esters to amides involves aluminum amides, which
              can be prepared from trimethylaluminum and the amine. These reagents convert esters
              directly to amides at room temperature. 142
                                                            O
                                  CO CH 3 (CH 3 2           CNHCH Ph
                                                                  2
                                     2
                                             ) AlNCH Ph
                                               H   2
                                                                78%
              The driving force for this reaction is the strength of the aluminum-oxygen bond
              relative to the aluminum-nitrogen bond. This reaction provides a good way of making
              synthetically useful amides of N-methoxy-N-methylamine. 143  Trialkylaminotin and
              bis-(hexamethyldisilylamido)tin amides, as well as tetrakis-(dimethylamino)titanium,
              show similar reactivity. 144  These reagents can also catalyze exchange reactions between
              amines and amides under moderate conditions. 145  For example, whereas exchange of
              benzylamine into N-phenylheptanamide occurs very slowly at 90 C in the absence of

              catalyst (> months), the conversion is effected in 16 h by Ti	N CH   
 .
                                                                     3 2 4
                          O                                           O
                                             5 mol % Ti(NMe )
                                                         2 4
                  CH (CH ) CNHPh +  PhCH NH 2                  CH (CH ) CNHCH Ph
                                                                    2 5
                                                                            2
                        2 5
                     3
                                                                 3
                                       2
                                                90°C, 16 h
                                                                        99%
              141   J. Diago-Mesequer, A. L. Palomo-Coll, J. R. Fernandez-Lizarbe, and A. Zugaza-Bilbao, Synthesis, 547
                 (1980); R. D. Tung, M. K. Dhaon, and D. H. Rich, J. Org. Chem., 51, 3350 (1986); W. J. Collucci,
                 R. D. Tung, J. A. Petri, and D. H. Rich, J. Org. Chem., 55, 2895 (1990); J. Jiang, W. R. Li,
                 R. M. Przeslawski, and M. M. Joullie, Tetrahedron Lett., 34, 6705 (1993).
              142   A. Basha, M. Lipton, and S. M. Weinreb, Tetrahedron Lett., 4171 (1977); A. Solladie-Cavallo and
                 M. Bencheqroun, J. Org. Chem., 57, 5831 (1992).
              143
                 J. I. Levin, E. Turos, and S. M. Weinreb, Synth. Commun., 12, 989 (1982); T. Shimizu, K. Osako, and
                 T. Nakata, Tetrahedron Lett., 38, 2685 (1997).
              144   G. Chandra, T. A. George, and M. F. Lappert, J. Chem. Soc. C, 2565 (1969); W.-B. Wang and
                 E. J. Roskamp, J. Org. Chem., 57, 6101 (1992); W.-B. Wang, J. A. Restituyo, and E. J. Roskamp,
                 Tetrahedron Lett., 34, 7217 (1993).
              145
                 S. E. Eldred, D. A. Stone, S. M. Gellman, and S. S. Stahl, J. Am. Chem. Soc., 125, 3423 (2003).
   278   279   280   281   282   283   284   285   286   287   288