Page 359 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 359

-Fluoroketones are made primarily by reactions of enol acetates or silyl      331
              enol ethers with fluorinating agents such as CF OF 129 , XeF , 130  or dilute
                                                           3
                                                                      2
              F . 131  Other fluorinating reagents that can be used include N-fluoropyridinium  SECTION 4.3
               2
              salts, 132  1-fluoro-4-hydroxy-1,4-diazabicyclo[2.2.2]octane, 133  and 1,4-difluoro-1,4-  Electrophilic Substitution
                                                                                          to Carbonyl Groups
              diazabicyclo[2.2.2]octane. 134  These reagents fluorinate readily enolizable carbonyl
              compounds and silyl enol ethers.
                              O                             O
                                                 +
                            PhCCH CH   + F  N +  N OH     PhCCHCH 3
                                 2
                                    3
                                                                  88%         Ref. 135
                                                             F
                  The  -halogenation of acid chlorides also has synthetic utility. The mechanism
              is presumed to be similar to ketone halogenation and to proceed through an enol. The
              reaction can be effected in thionyl chloride as solvent to give  -chloro,  -bromo, or
               -iodo acyl chlorides, using, respectively, N-chlorosuccinimide, N-bromosuccinimide,
              or molecular iodine as the halogenating agent. 136  Since thionyl chloride rapidly converts
              carboxylic acids to acyl chlorides, the acid can be used as the starting material.
                                         N-chlorosuccinimide
                         CH (CH ) CH CO H              CH (CH ) CHCOCI
                                                         3
                                                             2 3
                            3
                               2 3
                                       2
                                   2
                                              SOCl 2
                                                               Cl
                                                                    87%
                                           I 2
                           PhCH CH CO H          PhCH CHCOCl
                                     2
                               2
                                  2
                                                     2
                                          SOCl 2
                                                      I     95%
              Direct chlorination can be carried out in the presence of ClSO H, which acts as a strong
                                                               3
              acid catalyst. These procedures use various compounds including 1,3-dinitrobenzene,
              chloranil, and TCNQ to inhibit competing radical chain halogenation. 137
                                              Cl , ClSO H
                                                     3
                                                2
                                                140°C
                                                           ) CHCHCO H
                            (CH ) CHCH CO H            (CH 3 2     2
                               3 2
                                         2
                                      2
                                               chloranil
                                                              Cl
              4.3.2. Sulfenylation and Selenenylation   to Carbonyl Groups
                  The  -sulfenylation 138  and  -selenenylation 139  of carbonyl compounds are
              synthetically important reactions, particularly in connection with the introduction of
              129
                 W. J. Middleton and E. M. Bingham, J. Am. Chem. Soc., 102, 4845 (1980).
              130   B. Zajac and M. Zupan, J. Chem. Soc., Chem. Commun., 759 (1980).
              131
                 S. Rozen and Y. Menahem, Tetrahedron Lett., 725 (1979).
              132   T. Umemoto, M. Nagayoshi, K. Adachi, and G. Tomizawa, J. Org. Chem., 63, 3379 (1998).
              133   S. Stavber, M. Zupan, A. J. Poss, and G. A. Shia, Tetrahedron Lett., 36, 6769 (1995).
              134
                 T. Umemoto and M. Nagayoshi, Bull. Chem. Soc. Jpn., 69, 2287 (1996).
              135   S. Stavber and M. Zupan, Tetrahedron Lett., 37, 3591 (1996).
              136   D. N. Harpp, L. Q. Bao, C. J. Black, J. G. Gleason, and R. A. Smith, J. Org. Chem., 40, 3420 (1975);
                 Y. Ogata, K. Adachi, and F.-C. Chen, J. Org. Chem., 48, 4147 (1983).
              137
                 Y. Ogata, T. Harada, K. Matsuyama, and T. Ikejiri, J. Org. Chem., 40, 2960 (1975); R. J. Crawford, J.
                 Org. Chem., 48, 1364 (1983).
              138   B. M. Trost, Chem. Rev., 78, 363 (1978).
              139
                 H. J. Reich, Acc. Chem. Res., 12, 22 (1979); H. J. Reich, J. M. Renga, and I. L. Reich, J. Am. Chem.
                 Soc., 97, 5434 (1975).
   354   355   356   357   358   359   360   361   362   363   364