Page 580 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 580

554                                       Scheme 6.12. (Continued)

                                i
      CHAPTER 6                10     Aza-Claisen rearrangement of O-allyl imidates
      Concerted                     R          R
      Cycloadditions,
      Unimolecular                O   NH         NH
      Rearrangements, and                    O
      Thermal Eliminations
                               a. S. J. Rhoads and N. R. Raulins, Org. React., 22, 1 (1975).
                              b. J. A. Berson and M. Jones, Jr., J. Am. Chem. Soc., 86, 5019 (1964).
                               c. D. A. Evans and A. M. Golob, J. Am. Chem. Soc., 97, 4765 (1975).
                              d. D. S. Tarbell, Org. React., 2, 1 (1944).
                               e. W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T. Li, D. J. Faulkner, and M.
                                R. Petersen, J. Am. Chem. Soc., 92, 741 (1970).
                               f. R. E. Ireland and R. H. Mueller, J. Am. Chem. Soc., 94, 5898 (1972).
                              g. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., 98, 2868 (1976).
                              h. D. Felix, K. Gschwend-Steen, A. E. Wick, and A. Eschenmoser, J. Am. Chem. Soc., 98, 2868
                                (1976).
                               i. L. E. Overman, Acc. Chem. Res., 13, 218 (1980).


                       Owing to the concerted mechanism, chirality at C(3) [or C(4)] leads to enantiospecific
                       formation of new stereogenic centers formed at C(1) [or C(6)]. 203  These relationships
                       are illustrated in the example below. Both the configuration of the new stereocenter
                       and the new double bond are those expected on the basis of a chairlike TS. Since
                       there are two stereogenic centers, the double bond and the asymmetric carbon, there
                       are four possible stereoisomers of the product. Only two are formed. The E-double
                       bond isomer has the S-configuration at C(4) and the Z-isomer has the R-configuration.
                       These are the products expected for a chair TS. The stereochemistry of the new double
                       bond is determined by the relative stability of the two chair TSs. TS B is less favorable
                       than A because of the axial placement of the larger phenyl substituent.

                                     Ph                                       H
                                                      Ph R
                                  CH 3       CH 3           H        Ph         CH 3
                                                     CH
                                   B       H           3   E  CH 3      CH 3     A


                                    Ph
                                                                             H
                                      Z                                       S
                                            CH                         E
                                 CH 3          3                     Ph        CH 3
                                            R
                                     13%  H                             CH 3 87%
                           The products corresponding to boatlike TSs are usually not observed for acyclic
                       dienes. However, this TS is allowed and if steric factors make a boat TS preferable
                       to a chair, reaction can proceed through a boat. Thermochemical 204  and computa-
                       tional 205  studies indicate that the boat TS is intrinsically 6–10 kcal/mol higher in energy.
                       Reactions that proceed through a boat TS have the reverse stereochemical relationships
                       between the configuration at the stereogenic center and the double bond.

                       203   R. K. Hill and N. W. Gilman, Chem. Commun., 619 (1967); R. K. Hill, in Asymmetric Synthesis, Vol.
                          4, J. D. Morrison, ed., Academic Press, New York, 1984, pp. 503–572.
                       204   M. Goldstein and M. S. Benzon, J. Am. Chem. Soc., 94, 7147 (1972).
                       205
                          O. Wiest, K. A. Black, and K. N. Houk, J. Am. Chem. Soc., 116, 10336 (1995).
   575   576   577   578   579   580   581   582   583   584   585