Page 771 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 771
Scheme 8.14. (Continued) 747
a. F. Little and G. C. Fu, Angew. Chem. Int. Ed. Engl., 37, 3387 (1998). SECTION 8.2
b. T. L. Wallow and B. M. Novak, J. Org. Chem., 59, 5034 (1994).
c. D. Badone, M. Baroni, R. Cardamone, A Ielmini, and U. Guzzi, J. Org. Chem., 62, 7170 (1997). Reactions Involving
d. S. Darses, T. Jeffery, J.-L. Brayer, J.-P. Demoute, and J.-P. Genet, Bull. Soc. Chim. Fr. 133, 1095 (1996); S. Sengupta Organopalladium
and S. Bhattacharyya, J. Org. Chem., 62, 3405 (1997). Intermediates
e. S. Darses, T. Jeffery, J.-P. Genet, J.-L. Brayer, and J.-P. Demoute, Tetrahedron Lett., 37, 3857 (1996).
f. B. I. Alo, A. Kandil, P. A. Patil, M. J. Sharp, M. A. Siddiqui, and V. Snieckus, J. Org. Chem., 56, 3763 (1991).
g. J. Sharp and V. Snieckus, Tetrahedron Lett., 26, 5997 (1985).
h. M. Ishikura, T. Ohta, and M. Terashima, Chem. Pharm. Bull., 33, 4755 (1985).
i. J. W. Guiles, S. G. Johnson, and W. V. Murray, J. Org. Chem., 61, 5169 (1996).
j. N. Miyaura, K. Yamada, H. Suginome, and A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985).
k. F. Bjorkling, T. Norin, C. R. Unelius, and R. B. Miller, J. Org. Chem., 52, 292 (1987).
l. N. Miyaura, M. Satoh, and A. Suzuki, Tetrahedron Lett., 27, 3745 (1986).
m. J. Uenishi, J.-M. Beau, R. W. Armstrong, and Y. Kishi, J. Am. Chem. Soc., 109, 4756 (1987).
n. A. R. de Lera, A. Torrado, B. Iglesias, and S. Lopez, Tetrahedron Lett., 33, 6205 (1992).
o. M. A. F. Brandao, A. B. de Oliveira, and V. Snieckus, Tetrahedron Lett., 34, 2437 (1993).
p. J. D. White, T. S. Kim, and M. Nambu, J. Am. Chem. Soc., 119, 103 (1997).
q. Y. Kobayashi, T. Shimazaki, H. Taguchi, and F. Sato, J. Org. Chem., 55, 5324 (1990).
r. D. Meng, P. Bertinato, A. Balog, D.-S. Su, T. Kamenecka, E. J. Sorensen, and S. J. Danishefsky, J. Am. Chem. Soc.,
119, 10073 (1997).
s. A. G. M. Barrett, A. J. Bennett, S. Menzer, M. L. Smith, A. J. P. White, and D. J. Williams, J. Org. Chem., 64,
162 (1999).
t. T. Oh-e, N. Miyaura, and A. Suzuki, J. Org. Chem., 58, 2201 (1993).
u. N. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh, and A. Suzuki, J. Am. Chem. Soc., 111, 314 (1989).
v. N. Miyaura, T. Ishiyama, M. Ishikawa, and A. Suzuki, Tetrahedron Lett., 27, 6369 (1986).
w. T. Ishiyama, N. Miyaura, and A. Suzuki, Org. Synth., 71, 89 (1993).
x. M. Moreno-Manas, F. Pajuelo, and R. Pleixarts, J. Org. Chem., 60, 2396 (1995).
Aromatic acyl chlorides also react with arylboronic acids to give ketones. 234
O O
2 mol % Pdl (PPh )
3 2
2
1
2
1
Ar CCl + Ar B(OH) 2 Ar CAr 2
K PO ·1.5H O
3
2
4
-Unsaturated acyl chlorides can also be converted to ketones by reaction with
arylboronic acids. 235
O
CH 2 COCl 20 mol % PdCl (PPh ) CH
2
3 2
+ ArB(OH) 2 2 C Ar
CH 3 K 3 PO 4
CH 3
64%
Ketones can also be prepared directly from carboxylic acids by activation as
mixed anhydrides by dimethyl dicarbonate. 236 These conditions were used successfully
with alkanoic and alkanedioic acids, as well as aromatic acids.
1 mol % P(PPh ) O
3 4
1.3 equiv (CH OCO) O
3
2
RCO H + ArB(OH) 2 RCAr
2
dioxane, 80°C
In all these reactions, the acylating reagent reacts with the active Pd(0) catalyst to
give an acyl Pd(II) intermediate. Transmetallation by the organoboron derivative and
reductive elimination generate the ketone.
234 Y. Urawa and K. Ogura, Tetrahedron Lett., 44, 271 (2003).
235 Y. Urawa, K. Nishiura, S. Souda, and K. Ogura, Synthesis, 2882 (2003).
236
R. Kakino, H. Narahashi, I. Shimizu, and A. Yamamoto, Bull. Chem. Soc. Jpn., 75, 1333 (2002).

