Page 782 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 782

758                                            1.8 mol % NiCl (dppp)
                                                               2
      CHAPTER 8          (CH ) NCO 2         O CN(CH )   CH MgBr     CH 3          CH 3  89%
                                                            3
                                              2
                                                    3 2
                            3 2
      Reactions Involving                                                              Ref. 271
      Transition Metals
                       Vinyl carbamates are also reactive.
                                 OTBDMS                                          OTBDMS
                                                                 Ni(acac) 2
                                                       +   RMgX
                              ) CH
                                                                              ) CH
                          (CH 3 2       O CN[CH(CH ) ]                    (CH 3 2       R
                                         2
                                                  3 2 2
                                   CH 3                                            CH 3
                                           R = CH  = CH, Ph
                                                2
                                                                                       Ref. 272
                           Similarly, nickel catalysis permits the extension of cross coupling to vinyl
                       phosphates, which are in some cases more readily obtained and handled than vinyl
                       triflates. 273
                                           OPO(OPh) 2   Ni(dppe) Cl 2   Ph
                                                              2
                                                          1 mol %
                                               +   PhMgBr
                                                                           92%
                           Nickel acetylacetonate, Ni acac	 , in the presence of a styrene derivative promotes
                                                     2
                       coupling of primary alkyl iodides with organozinc reagents. The added styrene
                       serves to stabilize the active catalytic species, and of the derivatives examined,
                       m-trifluoromethylstyrene was the best. 274
                                    O                                        O
                                                           Ni(acac) 2
                                 N  CCH CH I + (n -C H ) Zn               N  C(CH ) CH 3
                                                                                 2 6
                                          2
                                                 5 11 2
                                       2
                                                      m-CF C H CH  CH 2             70%
                                                          3 6 4
                       This method can extend Ni-catalyzed cross coupling to functionalized organometallic
                       reagents.
                           Nickel can also be used in place of Pd in Suzuki-type couplings of boronic acids.
                       The main advantage of nickel in this application is that it reacts more readily with aryl
                       chlorides 275  and methanesulfonates 276  than do the Pd systems. These reactants may be
                       more economical than iodides or triflates in large-scale syntheses.
                                                            Ni(dppf) Cl 2
                                                                  2
                                                              4 mol %
                        CH 3       B(OH)  + CH SO 3     CN             CH 3              CN
                                            3
                                       2
                                                           3 equiv K 2 CO 3
                                                                                        97%
                       271
                          C. Dallaire, I. Kolber, and M. Gringas, Org. Synth., 78, 42 (2002).
                       272   F.-H. Poree, A. Clavel, J.-F. Betzer, A. Pancrazi, and J. Ardisson, Chem. Eur. J., 7553 (2003).
                       273
                          A. Sofia, E. Karlstom, K. Itami, and J.-E. Backvall, J. Org. Chem., 64, 1745 (1999); Y. Nan and
                          Z. Yang, Tetrahedron Lett., 40, 3321 (1999).
                       274   R. Giovannini, T. Studemann, G. Dussin, and P. Knochel, Angew. Chem. Int. Ed. Engl., 37, 2387
                          (1998); R. Giovannini, T. Studemann, A. Devasagayaraj, G. Dussin, and P. Knochel, J. Org. Chem.,
                          64, 3544 (1999).
                       275   S. Saito, M. Sakai, and N. Miyaura, Tetrahedron Lett., 37, 2993 (1996); S. Sato, S. Oh-tani, and
                          N. Miyaura, J. Org. Chem., 62, 8024 (1997).
                       276
                          V. Percec, J.-Y. Bae, and D. H. Hill, J. Org. Chem., 60, 1060 (1995); M. Ueda, A. Saitoh, S. Oh-tani,
                          and N. Miyaura, Tetrahedron, 54, 13079 (1998).
   777   778   779   780   781   782   783   784   785   786   787