Page 362 - Advanced engineering mathematics
P. 362
342 CHAPTER 10 Systems of Linear Differential Equations
12. Use a software package to generate a phase portrait 14. A more sophisticated approach to a competing species
for each of the following predator/prey models. model is to incorporate a logistic term, leading to the
(a) x = x − 0.5xy, y = 2xy − 1.2y model
(b) x = 3x − 1.5xy, y = xy − 1.6y 2 2
x = ax − bx − kxy, y = cy − dy −rxy,
(c) x = 1.6x − 2.1xy, y = 1.9xy − 0.4y
with the coefficients positive constants. Generate
(d) x = 1.8 − 0.2xy, y = 3.1xy − 0.4y
phase portraits for the following systems.
13. Generate a phase portrait for each of the following (a) x = x(1 − x − 0.5y),
competing species models. y = y(1 − 0.5y − 0.25x)
(a) x = 2x − xy, y = y − 2xy
(b) x = x(1 − x − 0.2y),
(b) x = 1.6y − 1.2xy, y = 2y − 0.4xy y = y(1 − 0.4y − 0.25x)
(c) x = 1.4x − 0.6xy, y = 2y − 0.7xy (c) x = x(2 − x − 0.2y), y = y(1 − 0.4y − x)
(d) x = 3.2x − 1.4xy, y = 4.4y − 0.8xy (d) x = x(1 − 0.5x − y), y = y(2 − 0.5y − 0.4x)
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 20:32 THM/NEIL Page-342 27410_10_ch10_p295-342